

Bilkent University​
Department of Computer Engineering

​
Senior Design Project​

T2504​
Pathogenius

​
Analysis and Requirement Report

Nazlı Apaydın 22202104

Ege Ateş 22201914

Yiğit Ali Doğan 22202329

Yunus Günay 22203758

Ata Uzay Kuzey 22203050

Supervisor: Can Alkan

Course Instructors: Mert Bıçakçı, İlker Burak Kurt

19.12.2025

​
This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfilment of the

requirements of the Senior Design Project course CS491/2.

Contents

1 Introduction​ 4

2 Current System​ 4

3 Proposed System​ 5

3.1 Overview​ 5

3.2 Functional Requirements​ 6

3.2.1 Main Requirements​ 6

3.2.1.1 Analysis & Workflow Management​ 6

3.2.1.2 FASTQ Processing & Classification​ 7

3.2.1.3 Dataset Management​ 7

3.2.1.4 Notifications​ 8

3.2.1.5 User Registration and Authentication​ 8

3.2.2 Secondary Features​ 9

3.3 Non-Functional Requirements​ 10

3.3.1 Usability​ 10

3.3.2 Reliability​ 10

3.3.3 Performance​ 11

3.3.4 Supportability​ 11

3.3.5 Scalability​ 11

3.4 Pseudo Requirements​ 12

3.5 System Models​ 13

3.5.1 Scenarios​ 13

3.5.2 Use Case Model​ 26

3.5.3 Object and Class Model​ 27

3.5.4 Dynamic Models​ 28

3.5.4.1 Activity Diagrams​ 28

3.5.4.2 State Diagrams​ 31

3.5.4.3 Sequence Diagrams​ 34

3.5.5 User Interface​ 37

4 Other Analysis Elements​ 47

4.1 Consideration of Various Factors in Engineering Design​ 47

4.1.1 Constraints​ 47

4.1.2 Standarts​ 49

4.1.2.1 IEEE 830​ 49

4.1.2.2 ISO/IEC 25010​ 50

4.1.2.3 UML 2.5.1 - Unified Modeling Language​ 50

4.1.2.4 ISO 9241-210​ 50

4.2 Risks and Alternatives​ 50

4.2.1 Insufficient Classification Accuracy Due to Limited FASTQ Size​ 50

4.2.2 Limited Interpretive Quality of Local Language Model​ 51

4.2.3 GPU Memory Limitations​ 51

2

4.2.4 Incomplete or Outdated Reference Databases​ 51

4.2.5 False Positives Due to Shared k-mers and Taxonomic Ambiguity​ 52

4.3 Project Plan​ 53

4.4 Ensuring Proper Teamwork​ 63

4.5 Ethics and Professional Responsibilities​ 64

4.6 Planning for New Knowledge and Learning Strategies​ 64

5 Glossary​ 65

6 References​ 67

3

Analysis and Requirement Report
Project Short-Name: Pathogenius

1​ Introduction

The rapid advances in sequencing technologies have enabled the analysis of genetic

material obtained from clinical and environmental samples. Despite this progress, the software

ecosystems required to interpret sequencing data remain complex, computationally expensive,

and often dependent on high-performance servers or continuous cloud connectivity. These

requirements pose a significant barrier in field settings, emergency response scenarios, and

resource-limited environments, where the lack of access to metagenomic analysis can hinder

timely pathogen identification and critical decision making.

Pathogenius addresses this challenge by providing a portable, offline metagenomic

analysis platform capable of operating on modest local hardware such as consumer grade

laptops. The system transforms raw long-read sequencing data into clear, species-level

identification results through a structured and automated analysis workflow. At its core,

Pathogenius employs Snakemake to coordinate a modular pipeline including quality control,

preprocessing and taxonomic classification. The classification stage relies on Kraken2, a

memory efficient k-mer based classifier that compares read fragments against a locally stored

reference database, enabling fast and reproducible analysis without reliance on external

services.

To ensure accessibility to non-expert users, Pathogenius provides a locally running

Electron.js based graphical interface that abstracts complex command-line operations and

offers real time feedback on system resources and workflow progress. A key innovation of the

platform is its integration of a local AI assistant, implemented using small or quantized

language models, which translates technical analysis results into readable and actionable

summaries while preserving full offline operation. This design ensures that sensitive data,

including potential human host DNA, remains transient and securely contained within the local

environment.

Although the current implementation is optimized for CPU-based execution, the system

architecture supports future integration of NVIDIA CUDA acceleration, enabling performance

scaling on compatible hardware. Positioned as a discovery-oriented decision support tool

rather than a definitive diagnostic service, Pathogenius is intended for use especially in water

based pathogen surveillance, emergency response operations, field hospitals, and clinics

operating under infrastructure constraints. By combining unbiased metagenomic analysis,

offline capability, and intuitive visualization, the platform bridges the gap between advanced

genomic methods and practical field deployment.

2​ Current System

Traditional pathogen detection approaches suffer from structural limitations that restrict

their suitability for on-site and discovery oriented use. PCR is highly sensitive but

laboratory-bound, qPCR and ddPCR are powerful yet costly and operationally complex, and

NGS-based metagenomics enables unbiased discovery but typically requires substantial

computational resources and expert interpretation [1]. As a result, existing systems built on

these methods tend to optimize for a single dimension while failing to provide a portable and

user-friendly solution. Pathogenius addresses these limitations by combining portable

4

long-read sequencing with an offline workflow, automated analysis workflow and an integrated

user interface that enables pathogen identification without reliance on advanced bioinformatics

expertise.

​ Commercial solutions such as Bio-Rad’s IQ-Check tests [2], for example, rely on

RT-qPCR workflows with carefully designed primers and probes to detect predefined

pathogens, delivering results within 12-24 hours depending on the sample type. However, their

primary weakness lies in their target specific design. Only anticipated pathogens can be

detected, and assay redesign is required when new organisms are involved. Pathogenius

overcomes this limitation by employing an unbiased metagenomic approach, in which raw

FASTQ reads are classified against a locally stored reference database. This enables

simultaneous screening of multiple organisms without prior assumptions about pathogen

identity, making Pathogenius suitable for discovery driven field scenarios.

Similarly, Norgen Biotek’s pathogen detection kits [3] follow a similar PCR-centered

paradigm and depend on predefined target pathogens. These methods require thermal cycling

equipment and rely on a steady supply of reagents, which restricts their flexibility in field

settings. In contrast, Pathogenius relies on a locally built and versioned reference index,

thereby recurring consumable costs and logistical dependencies after initial deployment.

Nanometa Live [4] represents one of the most advanced solutions for real-time

metagenomic visualization. However, it still exhibits key limitations when considered for field

deployment. Its operation assumes complex toolchain setup and command line driven

workflows, and its real-time analysis is constrained by batch processing and BLAST-based

validation, leading to increased latency on modest hardware. While highly effective for

monitoring and visualization, Nanometa Live primarily functions as an analysis dashboard

rather than a decision support system, and the interpretation of its analytical outputs remains

challenging for non-expert users. Pathogenius addresses these gaps by providing structured

result objects, confidence aware outputs, and intuitive visualizations, complemented by a local

AI module that converts technical outputs into readable summaries for end users.

Academic work based on Oxford Nanopore Technologies’ MinION device [5] has

demonstrated that portable long-read sequencing can be used for offline, on-site pathogen

detection with locally curated reference databases. However, such pipelines remain research

oriented, requiring expert driven database curation, command-line execution, and manual

interpretation of raw results. Pathogenius builds on these validated foundations but shifts the

emphasis from technical feasibility to operational usability by integrating automated workflow

execution, efficient k-mer based classification, persistent analysis management, and

user-friendly interface.

3​ Proposed System

3.1​ Overview

Pathogenius is a modular metagenomic analysis platform that can run offline, designed

to transform raw sequencing output into actionable, species-level pathogen identification

through an automated local workflow. The system is organized as a set of cooperating layers,

including the sequencing environment, reference data management, workflow execution, and

frontend interaction. All components operate entirely within the local environment, ensuring

independence from external infrastructure and network connectivity.

5

At the core of Pathogenius lies a Snakemake based workflow layer that manages all

analysis steps through a reproducible pipeline. Raw FASTQ files generated in the sequencing

environment are first processed by a preprocessing component that performs quality control

and cleanup. In parallel, curated reference genomes stored locally in FASTA format are

processed by Kraken2’s built-in database construction utilities to generate a

Kraken2-compatible k-mer index, which is managed as a dedicated index-building step within

the workflow. This locally generated index is stored and reused across analyses. Cleaned

reads are then classified using the Kraken2 classifier against the local index, producing

taxonomic assignments that are subsequently aggregated and processed to compute

confidence metrics and structured result files.

Pathogenius utilizes Electron.js to provide a locally running graphical interface that

enables users to select local input files, monitor real-time workflow execution, and interpret

analysis results. Processed outputs are transformed by an analyzer component into structured

result objects, which are then presented through visualization modules displaying species-level

findings using multiple chart types. To further ease interpretation for non-expert users,

Pathogenius integrates a local AI component that converts structured analytical results into

readable explanations and summaries, supporting informed interpretation while ensuring that

all data remains confined to the local system.

3.2​ Functional Requirements

These requirements define the specific behaviours and services the system must provide.

3.2.1 Main Requirements

3.2.1.1 Analysis & Workflow Management

●​ FR-AM-001: The system shall store all completed analyses in a persistent

local database for authenticated users including analysis name, date and

status.

●​ FR-AM-002: The system shall display a comprehensive analysis history table

for authenticated users, showing analysis name, date, input file, and

processing status.

●​ FR-AM-003: The system shall allow users to assign custom names and

descriptions to analyses.

●​ FR-AM-004: The system shall provide search and filter capabilities, allowing

users to locate specific past analyses by criteria such as name, date or

detected pathogens.

●​ FR-AM-005: The system shall enable users to reopen completed analyses to

view results.

●​ FR-AM-006: The system shall allow users to delete analyses with confirmation

prompts.

6

●​ FR-AM-007: The system shall support export of results and archiving multiple

analyses in different formats including PDF, JSON and CSV.

●​ FR-AM-008: The system shall use an offline large language model to further

elaborate on the complex classification metrics into easy to read, human

readable summary paragraphs.

3.2.1.2 FASTQ Processing & Classification

●​ FR-FP-001: The system shall accept long read FASTQ format files

(compressed and uncompressed) as primary input.

●​ FR-FP-002: The system shall validate input files and display file metadata

before processing.

●​ FR-FP-003: The system shall calculate and report confidence scores for each

species identification, distinguishing between the high and low confidence

scores for the analyses.

●​ FR-FP-004: The system shall coordinate the analysis pipeline using the

Snakemake workflow engine, ensuring deterministic execution of

preprocessing, classification and output stages.

●​ FR-FP-005: The system shall support checkpoint and resume functionality,

allowing analyses interrupted by the system events to continue from the last

successful workflow stage.

●​ FR-FP-006: The system shall generate preprocessing and classification

quality reports.

●​ FR-FP-007: The system shall support batch processing of multiple FASTQ

files to analyse and depict the results of all the input files.

3.2.1.3 Dataset Management

●​ FR-DM-001: The system shall maintain a local reference database composed

of species specific FASTA files curated from the NCBI resources.

●​ FR-DM-002: The system shall provide functionality to update the database by

querying an update server when network is available or importing from custom

FASTA files locally.

●​ FR-DM-003: The system shall display information about the current database

version including the number of species, last update date, and database size.

7

●​ FR-DM-004: The system shall support manual database curation, allowing

users to add, remove, or modify taxonomic information and associated

genomic data for specific species.

3.2.1.4 Notifications

●​ FR-NT-001: The system shall provide immediate visual notifications upon the

successful completion of an analysis workflow. This includes updating the

status in the analysis history and triggering a completion banner on the

dashboard.

●​ FR-NT-002: In the event of a processing failure, the system shall alert the user

with descriptive actionable error messages.

●​ FR-NT-003: For long running operations like k-mer classification or index

building, the system shall display real time progress indicators. These updates

must include the current workflow stage and the completion percentage.

●​ FR-NT-004: The system shall maintain a persistent history of all system

notifications, accessible via a dedicated section.

3.2.1.5 User Registration and Authentication

●​ FR-UA-001: The system shall provide user registration functionality allowing

new users to create accounts with username and password.The system must

validate that the username is unique and the password is secure.

●​ FR-UA-002: User authentication is not mandatory. The system will support a

‘Guest Mode’ for immediate offline use. Authenticated users shall gain access

to their local history.

●​ FR-UA-003: The system shall authenticate users through a login interface with

secure credential validation.

●​ FR-UA-004: The system shall store user credentials securely using

encryption.

●​ FR-UA-005: The system shall maintain separate user workspaces ensuring

data privacy between users.

●​ FR-UA-006: The system shall accommodate multiple users in a single device

with encryption to ensure that the users can keep their analysis secure.

8

3.2.2 Secondary Features

3.2.2.1 Realtime Data Display

●​ FR-RT-001: The system shall provide a real time progress bar indicating active

Snakemake stage and the completion percentage.

●​ FR-RT-002: The interface shall dynamically update a preliminary results table,

showing species names and use counts as they are identified.

●​ FR-RT-003: The system shall display live telemetry cards displaying real time

utilization metrics for the host CPU/GPU usage and available RAM.

●​ FR-RT-004: The system shall provide estimated time remaining for ongoing

analyses, adjusting the prediction based on the analyses.

●​ FR-RT-005: The system shall update classification statistics dynamically as

processing progresses.

●​ FR-RT-006: The system shall display the number of reads processed per

minute during analysis to provide feedback on the analysis efficiency.

●​ FR-RT-007: The system shall show preliminary results for completed workflow

stages while subsequent stages continue processing.

3.2.2.2 GPU Acceleration

●​ FR-GPU-001: In later stages the system shall detect available NVIDIA

CUDA-compatible GPUs and their available VRAM.

●​ FR-GPU-002: The system shall provide an user controlled option to enable or

disable GPU acceleration for classification tasks.

●​ FR-GPU-003: The system shall automatically optimize workload distribution

between CPU and GPU when acceleration is enabled.

●​ FR-GPU-004: The system shall fallback to CPU-only processing if GPU

acceleration fails or is unavailable.

●​ FR-GPU-005: The system shall display GPU utilization metrics during

accelerated processing.

●​ FR-GPU-006: The system shall support CUDA-accelerated k-mer matching

operations for improved performance.

9

3.3​ Non-Functional Requirements

These requirements define the quality attributes and operational constraints of Pathogenius,

categorized according to the ISO/IEC 25010 software quality standard.

3.3.1 Usability

●​ NFR-USE-01: The system shall provide a 100% graphical user interface (GUI) via

Electron.js for all operations, ensuring that field personnel never need to interact with

the underlying command-line or terminal.

●​ NFR-USE-02: The interface shall provide continuous visual feedback, including

dynamic progress bars and stage-specific status indicators ​ during long-running

metagenomic workflows.

●​ NFR-USE-03: The results dashboard must visually differentiate between high and

low-confidence species identifications using color-coding or uncertainty markers to

support accurate clinical interpretation.

●​ NFR-USE-04: The system shall deliver descriptive, actionable error messages that

specify the nature of the failure to facilitate rapid user-level troubleshooting.

3.3.2 Reliability

●​ NFR-REL-01: The system must maintain full functionality for preprocessing, k-mer

classification, and AI summarization in environments with no internet connectivity.

●​ NFR-REL-02: The deployment package must bundle all necessary bioinformatics

binaries, reference indices, and software dependencies to ensure complete

autonomous operation upon installation.

●​ NFR-REL-03: The system shall handle malformed or truncated FASTQ entries by

logging the specific error and skipping only the affected read to prevent entire analysis

termination.

●​ NFR-REL-04: The system must ensure deterministic execution, producing bit-identical

identification reports when provided with identical input data and reference databases.

●​ NFR-REL-05: The system shall strictly treat original raw FASTQ files as read-only,

ensuring no modification or deletion occurs during any stage of the Snakemake

pipeline.

10

3.3.3 Performance

●​ NFR-PER-01: The analysis engine must be optimized to operate on mid-range,

consumer-grade laptops without requiring high performance computing systems.

●​ NFR-PER-02: The system shall allow users to set memory caps for the classification

algorithms to prevent the process from exceeding the host machine’s physical RAM.

●​ NFR-PER-03: Preprocessing and classification must be completed within a timeframe

that allows for rapid field decision making, minimizing latency.

●​ NFR-PER-04: Computationally intensive tasks shall be executed as background

processes to ensure the Electron frontend remains responsive to user navigation

during the analysis.

3.3.4 Supportability

●​ NFR-SUP-01: The analysis pipeline must be implemented using modular Snakemake

rules to facilitate the independent update or replacement of individual bioinformatics

tools without system restructuring.

●​ NFR-SUP-02: The system shall generate persistent, human readable session logs that

record timestamps, analysis parameters, and hardware utilization for diagnostic

purposes.

●​ NFR-SUP-03: The system shall be deployable as a containerized application or

managed environment to ensure consistent performance across different OS platforms

like Windows or Linux.

3.3.5 Scalability

●​ NFR-SCA-01: The platform must support processing FASTQ files ranging from 1 MB to

10 GB, scaling its resource usage based on available disk space and VRAM.

●​ NFR-SCA-02: Upon initialization, the system must automatically detect available

hardware resources, including the number of CPU cores and NVIDIA CUDA

compatible GPUs.

●​ NFR-SCA-03: The classification module shall dynamically utilize multi threaded CPU

processing or GPU accelerated kernels depending on detected hardware capability.

●​ NFR-SCA-04: The interface must allow users to import and index new FASTA files into

the reference database to detect emerging pathogens without requiring core software

updates.

11

3.4​ Pseudo Requirements

A.​ Version Control and Data Management:

●​ Git will be used as the primary version control system to manage source code and

documentation.

●​ GitHub will serve as the central repository for the project and will also host the project

website via Github Pages (https://patho-genius.github.io).

●​ GitHub Issues will be used to track tasks, bugs, feature requests, and overall project

progress.

B.​ Technology Stack and Development Tools

●​ Snakemake will be employed to implement the analysis workflow, ensuring

reproducibility and modularity.

●​ Kraken2 will be used as the primary taxonomic classification engine.

●​ Local reference databases will be built from NCBI FASTA files using an index builder

component.

●​ Electron.js will be used to develop the frontend.

●​ NVIDIA CUDA will be used to support GPU-accelerated classification in later stages of

the project.

C.​ Offline Execution

●​ The system will be designed to operate fully offline after installation, without requiring

internet connectivity for core functionality.

●​ Reference databases and generated indexes will be stored locally and reused across

analyses.

D.​ Artificial Intelligence and Result Interpretation

●​ An open-source local language model will be integrated to generate readable

summaries and explanations from structured analysis outputs.

●​ All language model inference will be performed locally and will not rely on external

APIs or cloud-based services. Internet connectivity, when available, may be used only

to select or update which local model is used.

●​ Generated explanations will be derived solely from locally produced analysis results to

ensure data privacy.

E.​ Testing and Validation

●​ Unit testing will be performed for core components such as preprocessing, indexing,

classification, and result parsing.

●​ Integration testing will be conducted to validate correct interaction between workflow

steps and the frontend.

●​ Sample FASTQ datasets will be used to verify deterministic behavior and

reproducibility of analysis results.

F.​ Collaboration and Communication

●​ Team communication will be conducted using platforms such as WhatsApp for

asynchronous discussions.

12

●​ Online meeting tools such as Zoom or Google Meet will be used for synchronous

project meetings and reviews.

3.5​ System Models

3.5.1​ Scenarios

Scenario 1: User Login Process

Actor User

Entry Condition(s) The actor opens the Pathogenius application and views the login

page. No user should be logged in.

Exit Condition(s) The actor is successfully logged into the system and redirected to

the dashboard.

Flow of Events 1. The actor enters their username in the username field.

2. The actor enters their password in the password field.

3. The actor clicks the “Login” button.

4. The system validates the provided credentials against the

authentication service.

5. The system creates a session with appropriate permissions based

on the user’s role.

6. The actor is redirected to the dashboard with their profile

information displayed in the sidebar.

Alternative Flow 1. The actor provides incorrect username or password.

2. The system denies access and displays an error message.

3. The form remains on the login page, allowing retry.

Scenario 2: User Sign in Process

Actor User

Entry Condition(s) The computer is connected to the Internet and the actor opens the

sign in page.

Exit Condition(s) The actor successfully creates a new user.

Flow of Events 1. The actor enters their username in the username field.

2. The actor enters their password in the password field.

3. The actor enters their password in the enter your password again

field.

4. The actor clicks the “Sign in” button.

5. The system validates that the username does not exist and the

passwords are identical.

6. The system registers the new user to the system.

13

7. The actor is redirected to the login page.

Alternative Flow 1. The actor provides an already existing username or enters

different passwords.

2. The system denies the action and displays an appropriate error

message.

3. The form remains on the sign in page, allowing retry.

Scenario 3: Guest Mode Login

Actor User

Entry Condition(s) The actor opens the Pathogenius application and needs

offline/emergency access.

Exit Condition(s) The actor enters the system in guest mode with limited permissions.

Flow of Events 1. The actor clicks the “Continue as Guest” button on the login page.

2. The system creates a guest session with read and analyze

permissions.

3. The actor is redirected to the dashboard as “Guest User.”

4. The system tracks analyses created during the guest session

locally.

Scenario 4: User Logout

Actor User

Entry Condition(s) The actor is logged into the system.

Exit Condition(s) The actor is successfully logged out and returned to the login page.

Flow of Events 1. The actor clicks the logout button in the sidebar.

2. The system terminates the current session.

3. The system clears user state and session data.

4. The actor is redirected to the login page.

Scenario 5: View Dashboard

Actor User

Entry Condition(s) The actor is logged into the system.

Exit Condition(s) The actor views the system overview with resource statistics and

running analysis status.

14

Flow of Events 1. The actor navigates to the “Dashboard” section via the sidebar.

2. The system retrieves and displays current system statistics (RAM

usage, CPU usage).

3. The system checks for any running analyses.

4. If an analysis is running, the system displays a progress banner

with analysis name, status, and completion percentage.

Scenario 6: Create New Analysis - Select Input Files

Actor User

Entry Condition(s) The actor is logged in and navigates to the “New Analysis” section.

Exit Condition(s) The actor has selected one or more FASTQ files for analysis.

Flow of Events 1. The actor clicks the “Select Files” button or drags files into the

upload zone.

2. The system opens a file selection dialog filtered for FASTQ files.

3. The actor selects one or more FASTQ files (Nanopore-style long

reads).

4. The system displays the selected files in a list with filenames.

5. The actor proceeds to the next configuration step.

Alternative Flow

(Drag and Drop)

1. The actor drags FASTQ files from their file system into the upload

zone.

2. The system highlights the drop zone during the drag operation.

3. The system processes the dropped files and displays them in the

file list.

Alternative Flow (No

Files Selected)

1. The actor attempts to proceed without selecting files.

2. The system displays an alert: “Please select at least one FASTQ

file.”

3. The actor remains on the file selection step.

15

Scenario 7: Import Custom Database

Actor User

Entry Condition(s) The actor is logged in with admin privileges and navigates to the

Database section.

Exit Condition(s) A custom reference database is imported into the system.

Flow of Events 1. The actor navigates to the “Database” section.

2. The actor clicks the “Import Custom Database” button.

3. The system opens a folder selection dialog.

4. The actor selects a folder containing FASTA files.

Scenario 8: Configure Analysis Parameters

Actor User

Entry Condition(s) The actor has selected input files in Step 1 of the analysis wizard.

Exit Condition(s) The actor has configured all analysis parameters.

Flow of Events 1. The actor enters an analysis name (e.g., “Patient_001_Sample”).

2. The actor selects a sample type from the dropdown (Clinical

Sample, Environmental, Food Safety, Other).

3. The actor selects a reference database (NCBI RefSeq 2025,

Bacteria Only, Viral Only, Custom Database).

4. The actor adjusts the confidence threshold using the slider

(default: 0.7).

5. The actor proceeds to the review step.

Alternative Flow 1. The actor attempts to proceed without entering an analysis name.

2. The system displays an alert: “Please enter an analysis name.”

3. The actor remains on the configuration step.

Scenario 9: Review and Start Analysis

Actor User

Entry Condition(s) The actor has completed configuration in the analysis wizard.

Exit Condition(s) The pathogen analysis is successfully started and the Snakemake

workflow begins.

Flow of Events 1. The system displays a summary of the analysis configuration

(name, files, sample type, database).

2. The actor reviews the configuration details.

3. The actor clicks the “Start Analysis” button.

4. The system creates an output directory for the analysis results.

5. The system generates a Snakemake configuration file.

6. The system initiates the Snakemake workflow with Kraken2

classification.

16

5. The system validates the selected folder structure.

6. The system begins the database import process.

7. The system displays a success message upon completion.

Alternative Flow 1. The selected folder does not contain valid database files.

2. The system displays an error.

3. The actor is prompted to select a different folder.

7. The actor is redirected to the Results page to monitor progress.

Scenario 10: Monitor Running Analysis

Actor User

Entry Condition(s) An analysis has been started and is currently running.

Exit Condition(s) The actor monitors the analysis progress in real-time.

Flow of Events 1. The actor views the running analysis banner on the Dashboard or

Results page.

2. The system displays the analysis name, current status, and

progress percentage.

3. The system updates the progress bar as the workflow progresses

through stages:

 - Preprocessing (Quality filtering reads)

 - Classifying (Running Kraken2 classification)

 - Processing (Processing classification results)

 - Finalizing (Generating reports)

4. Upon completion, the system updates the status to “Completed”

and moves the analysis to history.

Alternative Flow 1. The analysis encounters an error during processing.

2. The system updates the status to “Failed” and displays the error

message.

3. The analysis is moved to history with failed status.

Scenario 11: Cancel Running Analysis

Actor User

Entry Condition(s) An analysis is currently running.

Exit Condition(s) The running analysis is cancelled.

Flow of Events 1. The actor navigates to the Results page and locates the running

analysis.

2. The actor clicks the “Cancel” button next to the running analysis.

3. The system prompts for confirmation: “Are you sure you want to

cancel this analysis?”

4. The actor confirms cancellation.

5. The system terminates the Snakemake workflow process.

6. The analysis is marked as “Cancelled” and moved to history.

17

18

Scenario 12: View Analysis History

Actor User

Entry Condition(s) The actor is logged in.

Exit Condition(s) The actor views the list of all past analyses.

Flow of Events 1. The actor navigates to the “Results” section via the sidebar.

2. The system retrieves and displays a table of completed, failed,

and cancelled analyses.

3. Each row shows: Analysis Name, Date, Sample Type, Status,

Pathogens Detected, and Action buttons.

4. The actor can search/filter analyses using the search input.

Scenario 13: View Detailed Analysis Results

Actor User

Entry Condition(s) The actor is logged in and an analysis has been completed

successfully.

Exit Condition(s) The actor views the detailed pathogen identification results.

Flow of Events 1. The actor clicks “View Report” on a completed analysis in the

history table.

2. The system retrieves the analysis results from the stored JSON

file.

3. The system displays the detailed result view including:

 - Analysis summary (total reads, classified reads, classification

rate)

 - Quality metrics (average quality, high-quality rate, mean

coverage)

 - Pathogen cards showing detected pathogens with abundance,

confidence, and risk level

 - Taxonomy breakdown (bacteria, viruses, etc.)

4. The actor can switch between tabs.

Scenario 14: Export Analysis Results

Actor User

Entry Condition(s) The actor is viewing detailed results of a completed analysis.

Exit Condition(s) The analysis results are exported in the selected format.

19

Flow of Events 1. The actor clicks the “Export” button on the results detail view.

2. The actor selects the export format (PDF, JSON, CSV).

3. The system generates the export file with all relevant data.

4. The system prompts the actor to select a save location.

5. The file is saved to the specified location.

Alternative Flow View Detailed Analysis Results

Scenario 15: Check for Database Updates

Actor User

Entry Condition(s) The actor is logged in and the system has network connectivity.

Exit Condition(s) The system checks for and reports available database updates.

Flow of Events 1. The actor navigates to the “Database” section.

2. The actor clicks the “Check for Updates” button.

3. The system queries the update server for newer database

versions.

4. The system displays update availability status and version

information.

5. If updates are available, the actor can initiate the download.

Alternative Flow 1. The system cannot reach the update server.

2. The system displays: “Update check requires network

connection.”

Scenario 16: Add New Species to The Database

Actor User

Entry Condition(s) The actor is logged in and navigates to the Database section.

Exit Condition(s) A new species and its associated genomic data are successfully

integrated into the reference database.

Flow of Events 1. The actor navigates to the “Database” page from the sidebar.

2. The actor scrolls to the “Custom Species” section.

3. The actor clicks the “Add FASTA” button.

4. The system opens a file selection dialog.

5. The actor selects a FASTA file (.fasta or .fa) from their local

filesystem.

6. The system prompts the actor to enter species metadata (species

name, taxonomic ID, type).

7. The actor fills in the required metadata fields.

20

8. The system validates the FASTA file format and metadata.

9. The system indexes the sequences and adds the species to the

local database.

10. The system displays the new species in the “Custom Species”

list with its metadata.

Alternative Flow

(Invalid File Format)

1. The actor selects a file that is not a valid FASTA format.

2. The system displays an error message indicating the file format is

invalid.

3. The system prompts the actor to select a valid FASTA file.

Alternative Flow

(Duplicate Species)

1. The actor attempts to add a species that already exists in the

database.

2. The system warns the actor about the duplicate entry.

3. The actor can choose to update the existing entry or cancel the

operation.

Scenario 17: Remove Species From Database

Actor User

Entry Condition(s) The actor is logged in and navigates to the Database section. ​
At least one custom species entry exists in the database.​
There is no ongoing analysis.

Exit Condition(s) The selected species entry is successfully removed from the local

reference database.

Flow of Events 1. The actor navigates to the “Database” page from the sidebar.

2. The actor scrolls to the “Custom Species” section.

3. The actor locates the species they want to remove from the list.

4. The actor clicks the “Remove” button next to the species entry.

5. The system displays a confirmation dialog asking if the actor

wants to remove the species.

6. The actor confirms the removal.

7. The system removes the species entry from the database index.

8. The system updates the species list to reflect the removal.

9. The system displays a success notification.

Alternative Flow 1. The actor clicks “Cancel” in the confirmation dialog.

2. The system closes the dialog and the species remains in the

database.

21

Scenario 18: Edit Taxonomic Information

Actor User

Entry Condition(s) The actor is logged in and navigates to the Database section.​
At least one custom species entry exists in the database.​
There is no ongoing analysis.

Exit Condition(s) The taxonomic information for the selected species is successfully

updated.

Flow of Events 1. The actor navigates to the “Database” page from the sidebar.

2. The actor scrolls to the “Custom Species” section.

3. The actor locates the species they want to edit.

4. The actor clicks the “Edit” button next to the species entry.

5. The system displays an edit dialog with the current species

information.

6. The actor modifies the desired fields (species name, taxonomic

ID, or type).

7. The actor confirms the changes.

8. The system validates the updated information.

9. The system saves the updated metadata to the database.

10. The system displays the updated species information in the list.

11. The system shows a success notification.

Alternative Flow

(Invalid Taxonomic

ID)

1. The actor enters an invalid taxonomic ID format.

2. The system displays a validation error.

3. The actor corrects the taxonomic ID and resubmits.

Alternative Flow

(Cancel Edit)

1. The actor clicks “Cancel” or closes the edit dialog.

2. The system discards the changes and retains the original

information.

Scenario 19: View System Resources

Actor User

Entry Condition(s) The actor is logged in to the application.

Exit Condition(s) The actor views the current system resource usage including CPU,

RAM, GPU, and storage.

Flow of Events 1. The actor navigates to the “Dashboard” page from the sidebar.

2. The system automatically loads and displays current system

resource statistics.

3. The actor views the “System Resources” card.

Alternative Flow

(Resource Warning)

1. A system resource exceeds the warning threshold (e.g., storage

below 10%).

22

2. The system highlights the resource in red/warning color.

3. The system displays a warning notification to the actor.

Alternative Flow

(GPU Not Available)

1. The system detects that the GPU is not available.

2. The system displays “Not Available” in the GPU status.

3. The system notifies the actor that analyses may run slower

without GPU acceleration.

Scenario 20: Search and Filter Analyses

Actor User

Entry Condition(s) The actor is logged in and on the Results page with multiple

analyses in history.

Exit Condition(s) The actor successfully filters and finds specific analyses based on

search criteria.

Flow of Events 1. The actor navigates to the “Results” page from the sidebar.

2. The system displays the Analysis History table with all completed

analyses.

3. The actor locates the search box above the history table.

4. The actor types a search term (analysis name, sample type, or

date).

5. The system filters the table in real-time as the actor types.

6. The system displays only analyses matching the search criteria.

7. The actor can view the filtered results and select one to view

details.

Alternative Flow 1. The actor enters a search term that matches no analyses.

2. The system displays an empty table with a message “No analyses

found.”

3. The actor can clear the search to view all analyses again.

Scenario 21: Change User Password

Actor Registered User

Entry Condition(s) The actor has a registered username in the system

Exit Condition(s) The actor changes their password.

Flow of Events 1. The actor clicks on the change password button

2. The actor enters their old password, and enters their new

password twice

3. The system checks the validity of the credentials and checks that

the two passwords are the same.

23

4. The password is changed in the database.

Alternative Flow 1. The actor enters their old password incorrectly.

2. The system denies changing of the password.

Scenario 22: Admin Changes User’s Password

Actor Admin

Entry Condition(s) The actor is logged in with administrator privileges. The actor has

navigated to the User Management section and at least one

registered user exists in the system.

Exit Condition(s) The selected user's password is successfully changed by the

administrator.

Flow of Events 1. The actor accesses the “User Management” section.

2. The system displays a list of all registered users.

3. The actor locates the user whose password needs to be changed.

4. The actor clicks the “Reset Password” button next to the user

entry.

5. The actor enters a new temporary password for the user.

6. The actor confirms the new password by re-entering it.

7. The system validates the password meets security requirements.

8. The system updates the user's password in the database.

9. The system optionally sends a notification to the affected user.

Alternative Flow 1. The actor enters a password that does not meet security

requirements.

2. The system displays an error message indicating the password

requirements.

3. The actor enters a valid password that meets the requirements.

Scenario 23: Download Results from The Cloud

Actor Registered User

Entry Condition(s) The actor is logged in with a registered account.

The system has an active internet connection.

The actor has completed analyses stored on a remote server/cloud.

Exit Condition(s) The analysis results are successfully downloaded from the internet

to the local system.

Flow of Events 1. The actor navigates to the “Results” page from the sidebar.

2. The actor clicks on the “Cloud Results” tab.

24

3. The system connects to the remote server and retrieves the list of

available results.

4. The system displays a list of analysis results stored remotely.

5. The actor selects one or more results to download.

6. The actor clicks the “Download” button.

7. The system displays a download progress indicator.

8. The system downloads the selected results to the local storage.

10. The system adds the downloaded results to the local Results

history.

11. The system displays a success notification with the download

location.

Alternative Flow 1. The download process is interrupted due to network issues.

2. The system displays an error message with the failure reason.

3. The system offers the option to retry the download.

Scenario 24: Upload Result to The Cloud

Actor Registered User

Entry Condition(s) The actor is logged in with a registered account.

The system has an active internet connection.

The actor has completed analyses on the local machine.

Exit Condition(s) The encrypted analysis results are successfully uploaded to the

internet.

Flow of Events 1. The actor navigates to the “Results” page from the sidebar.

2. The actor clicks the “Upload to Cloud” button of a completed

analysis.

3. The system prompts for confirmation and displays data privacy

notice.

4. The actor confirms the upload.

5. The system displays an upload progress indicator.

6. The system encrypts the data before transmission.

7. The system uploads the results to the remote server.

8. The system verifies the upload was successful.

9. The system marks the result as “Synced” in the local history.

10. The system displays a success notification.

Alternative Flow 1. The upload process is interrupted due to network issues.

2. The system displays an error message with the failure reason.

3. The system offers the option to retry the upload.

4. The local copy of the results remains intact.

25

Scenario 25: Forgot Password

Actor Registered User

Entry Condition(s) The actor is on the login page.

The actor has a registered account with a valid email address.

Exit Condition(s) The actor successfully resets their password and can log in with the

new credentials.

Flow of Events 1. The actor navigates to the login page.

2. The actor clicks the “Forgot Password?” link below the login form.

3. The system displays the password recovery form.

4. The actor enters their registered email address or username.

5. The actor clicks the “Send Recovery Link” button.

6. The system validates if the email/username exists in the

database.

7. The system generates a secure password reset token.

8. The system sends a password reset email to the registered email

address.

9. The system displays a confirmation message that the email has

been sent.

10. The actor opens the email and clicks the password reset link.

11. The system validates the reset token and displays the password

reset form.

12. The actor enters a new password.

13. The actor confirms the new password by re-entering it.

14. The system validates the new password meets security

requirements.

15. The system updates the password in the database.

16. The system displays a success message and redirects to the

login page.

17. The actor logs in with the new password.

Alternative Flow

(Email/Username

Not Found)

1. The actor enters an email or username that is not registered.

2. The system displays a generic message “If this account exists, a

recovery email has been sent.”

3. No email is sent, but no specific error is shown (security best

practice).

Alternative Flow

(Link Expired)

1. The actor clicks a password reset link that has expired (e.g., after

24 hours).

2. The system displays a message that the link has expired.

3. The system prompts the actor to request a new password reset

link.

3.5.2​ Use Case Model

Figure 1. Use Case Model of Pathogenius.

26

3.5.3​ Object and Class Model

Figure 2. Object & Class Model of Pathogenius.

27

3.5.4​ Dynamic Models

3.5.4.1​ Activity Diagrams

3.5.4.1.1​ Authentication

Figure 3. Activity Diagram of Authentication.

28

3.5.4.1.2​ Analysis Activity Diagram

Figure 4. Activity Diagram of FASTQ Analysis Workflow.

29

3.5.4.1.3​ Database Update Diagram

Figure 5. Activity Diagram for Database Management.

30

3.5.4.2​ State Diagrams

3.5.4.2.1​ Analysis State Diagram

Figure 6. Analysis Object State Diagram.

31

3.5.4.2.2​ Database State Diagram

Figure 7. Database Object State Diagram.

32

3.5.4.2.3​ User Session State Diagram

Figure 8. User Session State Diagram.

33

3.5.4.3​ Sequence Diagrams

3.5.4.3.1​ FastQ Analysis Sequence Diagram

Figure 9. FASTQ Analysis Sequence Diagram.

34

3.5.4.3.2​ User Authentication Sequence Diagram

Figure 10. User Authentication Sequence Diagram.

35

3.5.4.3.3​ Database Update

Figure 11. Database Update Sequence Diagram.

36

3.5.5​ User Interface

Figure 12. Login Page of Pathogenius.

Figure 13. Reset Password Pop-up.

37

Figure 14. Sign Up Page.

Figure 15. Dashboard of Pathogenius.

38

Figure 16. Recent Analysis in Dashboard Page.

Figure 17. New Analysis Page.

39

Figure 18. New Analysis Page After File Selection.

Figure 19. New Analysis Page Second Step, Configuration.

40

Figure 20. New Analysis Page Last Step, Launch.

Figure 21. Results Page with Running Analysis.

41

Figure 22. Results Page with Analysis History.

Figure 23. Detailed Results Page, AI Summary.

42

Figure 24. Detailed Results Page.

Figure 25. Detailed Results Page, Species Abundance Treemap.

43

Figure 26. Detailed Results Page, Sunburst Chart of Taxonomy.

Figure 27. Detailed Results Page, Classification Sankey Plot.

44

Figure 28. Database Management Page

Figure 29. Database Management Page, Continued.

45

Figure 30. Settings Page.

Figure 31. Settings Page, Continued.

46

4​ Other Analysis Elements

4.1​ Consideration of Various Factors in Engineering Design

4.1.1​ Constraints

Implementation Constraints:

●​ Version control and collaboration are managed through Git and GitHub.

●​ Bioinformatics pipeline implemented using Snakemake workflow management for modularity,

reproducibility, and fault tolerance.

●​ GUI developed with Electron.js for cross-platform compatibility and offline functionality.

●​ System employs phased development: initial CPU-based Kraken2 implementation with NVIDIA

CUDA-compatible hardware for future GPU acceleration.

●​ AI assistant functionality must use locally-operated Small Language Models (SLM) or quantized

LLMs for privacy and offline capability.

●​ Complete offline operation during the analysis phase with all dependencies, databases, and tools

bundled locally.

●​ Accepts raw sequencing data in standard FASTQ format; development uses simulated reads

from Icarus simulator.

Hardware and Software Specifications:

●​ Must operate on mid-range commercial laptops without requiring HPC clusters.

●​ Designed for low-power hardware to minimize energy consumption and maximize battery life in

off-grid scenarios.

Economic Constraints:

●​ Software must be completely free of charge.

●​ No recurring per-use costs to ensure accessibility in resource-limited settings.

Ethical Constraints:

●​ Transient local processing of clinical samples containing human DNA.

●​ No exposure of sensitive human genomic information.

●​ Functions as a decision support system, not a diagnostic device.

●​ Results presented as probabilistic evidence with appropriate uncertainty markers.

Environmental Constraints:

●​ Minimized environmental footprint through local analysis on low-power hardware.

●​ Performance-per-watt optimization for battery preservation.

●​ Avoids energy-intensive HPC clusters and continuous cloud connectivity.

Usability Constraints:

●​ Designed for field personnel without bioinformatics expertise.

●​ Command-line operations abstracted through GUI.

●​ No terminal or script interaction required.

47

Legal and Regulatory Considerations:

●​ Compliance with data privacy requirements for human genomic information.

●​ Operation within medical device regulations as decision support (not diagnostic) tool.

Maintainability and Extensibility:

●​ Modular architecture enabling future GPU acceleration migration.

●​ Workflow management supports reproducibility and fault tolerance.

Interoperability:

●​ Standard FASTQ format compatibility.

●​ Integration with Oxford Nanopore sequencing devices.

Global, Cultural, Social, Environmental, and Economic Factors:

The Pathogenius system addresses critical healthcare disparities in resource-limited global

settings where traditional laboratory infrastructure is unavailable. Culturally, the system respects data

sovereignty by maintaining complete offline operation, which is particularly important in regions with

concerns about external data control. Socially, it democratizes access to advanced pathogen detection by

removing cost barriers and simplifying technical complexity, enabling field personnel without specialized

training to perform sophisticated analyses. Environmentally, the platform's low-power operation and

elimination of cloud dependency significantly reduce carbon footprint compared to HPC-based

alternatives, making it sustainable for deployment in off-grid locations. Economically, the zero-cost model

and modest hardware requirements remove financial barriers that typically exclude resource-constrained

healthcare facilities from accessing cutting-edge diagnostic technology.

Table 1: Factors that can affect analysis and design.

Factor Effect Level Effect Description

Public Health High Enables rapid pathogen identification in outbreak

scenarios and resource-limited settings; improves

disease surveillance capabilities; reduces

time-to-diagnosis for infectious diseases.

Public Safety High Mitigates risks of disease spread through faster

pathogen detection; however, misinterpretation of

probabilistic results could lead to inappropriate treatment

if confidence indicators are ignored.

48

Public Welfare High Increases healthcare accessibility in remote areas;

removes cost barriers to advanced diagnostics;

empowers local healthcare workers with sophisticated

tools.

Global Factors High Addresses global health inequities via portable

diagnostics independent of central labs; supports

pandemic preparedness; enables data sovereignty

through offline operation.

Cultural Factors Medium Respects data privacy concerns; offline operation

addresses trust issues regarding cloud storage; requires

consideration of local healthcare practices and

workflows.

Social Factors High Democratizes access to advanced molecular

diagnostics; reduces dependency on bioinformatics

expertise; empowers non-expert users through intuitive

interface design.

Environmental

Factors

Medium-High Minimizes carbon footprint by eliminating cloud

infrastructure; optimizes energy efficiency for

battery-powered/off-grid operation; reduces impact vs.

energy-intensive HPC alternatives.

4.1.2​ Standarts

4.1.2.1​ IEEE 830

IEEE 830 provides the systematic framework for defining and documenting functional and

non-functional requirements. The standard ensures clarity, completeness, and unambiguous

specification, preventing misinterpretation among team members and supporting accurate validation and

testing. This contributes to producing well-defined, traceable, and maintainable specifications for

Pathogenius.

49

4.1.2.2​ ISO/IEC 25010

This standard provides a comprehensive quality model encompassing performance efficiency,

reliability, usability, security, maintainability, and compatibility. ISO/IEC 25010 [6] guides the assessment

of whether Pathogenius meets user expectations and operational requirements, particularly ensuring

reliable function in resource-constrained settings and producing trustworthy results. The project aligns

software quality goals with these internationally recognized guidelines.

4.1.2.3​ UML 2.5.1 - Unified Modeling Language

UML 2.5.1 [7] is employed for describing system structure, behavior, and component interactions

through standardized graphical representations. Use-case diagrams illustrate user interactions, while

activity diagrams describe workflow execution through tools like Kraken2. Adherence to UML ensures

systematic documentation of architectural decisions that can be easily understood, reviewed, and

maintained, contributing to clearer design discussions and more accurate implementation.

4.1.2.4​ ISO 9241-210

This standard emphasizes designing software by prioritizing user needs, capabilities, and

limitations, ensuring systems are usable and useful in real-world contexts. ISO 9241-210 [8] is particularly

relevant for Pathogenius as it targets users without bioinformatics expertise. The standard encourages

development of a clear, intuitive, error-reducing interface that supports correct interpretation of

species-level outputs without overwhelming users with technical complexity, incorporating iterative

evaluation and refinement.

4.2​ Risks and Alternatives

4.2.1​ Insufficient Classification Accuracy Due to Limited FASTQ Size

Description: The classification accuracy of the system may be reduced when the input FASTQ file

contains an insufficient number of reads or limited sequencing depth. In such cases, rare or

low-abundance pathogens may not be detected reliably, and accurate species-level identification may

require larger sequencing datasets, potentially exceeding 10 GB in size.

Contributing Factors:

●​ Low sequencing coverage or short sequencing runs, reducing the probability of sampling rare

organisms

●​ Presence of low-abundance pathogens within complex samples

●​ Hardware limitations restrict processing of very large FASTQ files in a single execution

50

Mitigation:

●​ Integrate a FASTQ splitting utility such as SeqKit to divide large FASTQ files into smaller,

manageable chunks that can be processed sequentially or incrementally.

4.2.2​ Limited Interpretive Quality of Local Language Model

Description: Pathogenius integrates a local language model to generate readable summaries and

explanations from structured analysis results. Due to hardware constraints and the requirement for local

execution, the selected model may be relatively low-parameter, potentially limiting the depth, nuance, or

contextual richness quality of generated answers.

Contributing Factors:

●​ Absence of large-scale pretrained models that typically require cloud-based inference

●​ Variability in analysis complexity that may exceed the expressive capacity of smaller models

Mitigations:

●​ Implement a deterministic, rule-based text generation layer that converts structured analysis

outputs into clear, generalized explanatory text.

●​ When internet connectivity is available, optionally allow the selection of higher-capacity language

models while keeping inference local.

4.2.3​ GPU Memory Limitations

Description: When GPU acceleration is implemented, large FASTQ inputs may exceed available GPU

memory (VRAM), even if total file size does not exceed typical storage limits such as 10 GB. This may

cause runtime failures or require fallback to CPU execution, reducing expected performance gains.

Contributing Factors:

●​ Limited VRAM capacity on consumer-grade GPUs

●​ High read counts or long-read lengths increasing memory footprint during classification

Mitigations:

●​ If supported, enable batching or chunked processing options provided by GPU-accelerated tools.

●​ Apply FASTQ splitting using utilities such as SeqKit to ensure per-batch memory usage remains

within VRAM limits.

4.2.4​ Incomplete or Outdated Reference Databases

Description: Pathogen detection accuracy is dependent on the completeness and correctness of the

local reference database. Missing, outdated, or poorly annotated genomes may result in false negatives

or ambiguous classifications.

Contributing Factors:

●​ Limited availability of high-quality reference genomes for emerging or rare pathogens

●​ User-curated databases that unintentionally omit relevant taxa

51

Mitigations:

●​ Maintain versioned reference databases with clear provenance data.

●​ Clearly report database version and coverage information in analysis outputs.

4.2.5​ False Positives Due to Shared k-mers and Taxonomic Ambiguity

Description: k-mer based classification methods such as Kraken2 may assign reads to incorrect or

overly specific taxa when closely related pathogens share a large proportion of genomic sequences. This

can lead to false positives or inflated confidence at the species level.

Contributing Factors:

●​ Closely related species with highly similar genomic content

●​ Short or noisy reads increasing classification ambiguity

●​ Overly permissive classification thresholds

Mitigations:

●​ Apply confidence thresholds and minimum read-count filters during the output post-processing.

●​ Clearly label low-confidence classifications in the interface and reports.

Table 2: Risks

Risk Likelihood Effect on the project B Plan Summary

Insufficient

classification

accuracy due

to limited

FASTQ size​

Medium

Low-abundance or rare

pathogens may not be

detected reliably, reducing

confidence in results

Split FASTQ files using SeqKit

Limited

interpretive

quality of local

language

model​

High

Generated explanations may

be overly simplistic or lack

contextual depth

Rule-based text generation or

enable optional

higher-capacity local models

when available

GPU memory

limitations

during

accelerated

processing​

High

GPU acceleration may fail or

fall back to CPU, increasing

analysis time

Enable GPU batching options

or split FASTQ files using

SeqKit to fit VRAM constraints

Incomplete or

outdated

reference

databases

Medium

Relevant pathogens may not

be identified or may be

reported with reduced

taxonomic resolution

Maintain versioned reference

databases with clear

provenance

52

False positives

due to shared

k-mers and

taxonomic

ambiguity

Medium

Incorrect or overly specific

species assignments may be

reported, reducing the

reliability of classification

outputs

Apply confidence thresholds,

minimum read-count filters,

and taxonomic rank fallback

strategies

4.3​ Project Plan

Figure 32. Gantt Chart of the Work Packages.

Pathogenius employs a work package-based planning methodology spanning September 2025 through

May 2026, systematically breaking down the complex development effort into seven manageable,

interconnected packages. This structured approach enables clear assignment of responsibilities with

designated leaders for each package while ensuring all team members contribute across multiple areas,

fostering shared leadership and collaborative ownership. By organizing work packages with explicit

start/end dates, objectives, tasks, and deliverables, the team establishes transparent accountability and

progress tracking mechanisms. The parallel execution of development work packages (backend and

frontend) maximizes efficiency while dedicated packages for testing, demo preparation, and

documentation ensure quality and course compliance without disrupting core development. Each work

package is tracked as a set of GitHub Issues, providing real-time visibility into task status, blockers, and

individual contributions, while the accompanying Gantt chart visualizes dependencies, critical paths, and

53

timeline adherence. This planning methodology directly addresses the iterative nature of the project. The

CS491 demo milestone provides early validation and feedback, informing refinements in CS492, rather

than treating the project as a single linear effort. The work package structure also facilitates risk

management by identifying dependencies early and allowing the team to adjust resource allocation based

on progress and challenges encountered. Most importantly, this approach ensures continuous

documentation throughout development rather than retroactive report writing, as the Documentation

package runs parallel to all technical work, systematically capturing decisions, models, and results as

they occur. The result is a realistic, achievable plan that balances academic requirements with

engineering best practices while maintaining flexibility to adapt to challenges discovered during

implementation.

Table 3: List of work packages

WP# Work package title Leader Members involved

WP1 Requirements & Analysis
Nazlı Apaydın Ege Ateş, Yiğit Ali

Doğan, Yunus Günay,

Ata Uzay Kuzey

WP2 System Design and Architecture
Yiğit Ali Doğan Nazlı Apaydın, Ege

Ateş, Yunus Günay, Ata

Uzay Kuzey

WP3 Backend Development
Ege Ateş Yiğit Ali Doğan

WP4 Frontend Development
Nazlı Apaydın Ata Uzay Kuzey, Yunus

Günay

WP5 Testing & Integration
Yunus Günay Ege Ateş, Yiğit Ali

Doğan, Nazlı Apaydın,

Ata Uzay Kuzey

WP6 Demo Preparation
Yunus Günay Ege Ateş, Yiğit Ali

Doğan, Nazlı Apaydın,

Ata Uzay Kuzey

WP7 Documentations & Deliverables
Ata Uzay

Kuzey

Nazlı Apaydın, Ege

Ateş, Yiğit Ali Doğan,

Yunus Günay,

54

WP 1: Requirements & Analysis

Start date: 2 September 2025 End date: 15 October 2025

Leader: Nazlı Apaydın Members involved: Ege Ateş, Yiğit Ali Doğan,

Yunus Günay, Ata Uzay Kuzey

Objectives: Establish foundational project requirements through comprehensive analysis. Define functional

and non-functional requirements following IEEE 830 standards. Conduct feasibility studies across technical,

economic, and ethical dimensions. Address consideration of various engineering factors, identify constraints

and standards, document risks with alternatives, create detailed project plans, establish teamwork strategies,

and plan for new knowledge acquisition.

Tasks:

Task 1.1 Market and Competitive Analysis: Research existing pathogen detection solutions. Identify gaps

Pathogenius can address.

Task 1.2 Academic Literature Review: Review metagenomic sequencing literature. Validate Kraken2

technical approach.

Task 1.3 Functional Requirements Specification: Define detailed functional requirements for core features.

Ensure testability and alignment with goals.

Task 1.4 Non-Functional Requirements Definition: Establish usability, reliability, performance,

supportability, and scalability requirements following ISO/IEC 25010.

Task 1.5 Consideration of Various Factors: Analyze impact of public health, safety, welfare, global, cultural,

social, environmental, and economic factors. Rate each factor 0-10 and create a summary table.

Task 1.6 Constraints and Standards Documentation: Document all constraints and engineering standards

utilized (IEEE 830, ISO/IEC 25010, UML 2.5.1, ISO 9241-210).

Task 1.7 Risk Analysis and B Plan: Identify project risks and develop alternative plans. Create a risk

summary table.

Task 1.8 Project Planning: Define work packages with leaders, members, dates, milestones, and

deliverables. Create a Gantt chart.

Task 1.9 Teamwork Strategy: Document strategies for shared leadership, inclusive collaboration, and equal

contribution. Plan evidence collection.

Task 1.10 Ethics and Professional Responsibilities: Identify ethical responsibilities to be fulfilled

throughout the project.

Task 1.11 Learning Strategy Planning: Plan new knowledge acquisition and identify learning strategies.

Deliverables

D1.1: Project Specification Document

D1.2: Functional Requirements Specification

D1.3: Non-Functional Requirements Document

D1.4: Market Analysis Report

D1.5: Feasibility Study Report

D1.6: Constraints and Standards Compliance Document

55

WP 2: System Design and Architecture

Start date: October 1, 2025 End date: November 15 2025

Leader: Yiğit Ali Doğan Members involved:

Nazlı Apaydın, Ege Ateş,

Yunus Günay, Ata Uzay Kuzey

Objectives: Translate requirements into detailed system architecture with complete UML modeling. Design

four-layer architecture, decompose into subsystems, create all system models for Analysis Report. Develop

use cases, class, activity, sequence, and state diagrams. Design UI wireframes and navigation. Define

interfaces and data management strategy.

Tasks:

Task 2.1 Design Goals Establishment: Define usability, performance, reliability, maintainability, scalability,

security goals. Prioritize based on requirements.

Task 2.2 High-Level Architecture Design: Create diagrams showing Sequencing Environment, Reference,

Workflow, and Frontend layers with interfaces.

Task 2.3 Subsystem Decomposition: Decompose into manageable subsystems. Define responsibilities and

dependencies.

Task 2.4 Use Case Model Development: Create use case diagrams with all actors and interactions.

Task 2.5 Object and Class Model Design: Develop class diagrams with entities, attributes, methods, and

relationships.

Task 2.6 Dynamic Models - Activity Diagrams: Create activity diagrams for authentication, analysis

workflow, and database update.

Task 2.7 Dynamic Models - Sequence Diagrams: Develop sequence diagrams for FASTQ analysis,

authentication, and database update.

Task 2.8 Dynamic Models - State Diagrams: Create state diagrams for Analysis, User Session, and

Database objects.

Task 2.9 User Interface Design: Design UI navigation and create wireframes for all major screens with

navigational paths.

Task 2.10 Hardware/Software Mapping: Document deployment architecture and hardware requirements.

Task 2.11 Data Management Strategy: Design file-based storage for FASTA, indices, results, and

configuration.

Task 2.12 API and Interface Specification: Specify interfaces between components, data formats, and error

codes.

Deliverables

D2.1: Design Goals Document

D2.2: High-Level Architecture Diagram

D2.3: Subsystem Decomposition Diagram

D2.4: Use Case Diagrams

D2.5: Class Diagrams

56

D2.6: Activity Diagrams

D2.7: Sequence Diagrams

D2.8: State Diagrams

D2.9: UI Wireframes and Navigation Structure

D2.10: Hardware/Software Mapping Documentation

D2.11: Data Management Specification

D2.12: API and Interface Specifications

WP 3: Backend Development

Start date: October 14, 2025 End date: April 15 2025

Leader:

Ege Ateş

Members involved:

Yiğit Ali Doğan

Objectives: Implement core computational pipeline across both semesters. CS491: develop simplified

pipeline with pre-made FASTQ and dockerized Kraken2 for demo. CS492: add basecaller integration,

complete preprocessing, full database management, and optimizations. Develop Snakemake workflows,

integrate Kraken2, ensure robust error handling.

Tasks:

Task 3.1 Development Environment Setup: Configure Git, dependencies, Docker, and CI/CD pipeline.

Task 3.2 Snakemake Workflow Implementation: Implement modular rules for preprocessing, classification,

and output processing. CS491: simplified workflow. CS492: complete workflow with basecaller.

Task 3.3 Docker Configuration (CS491): Create container with Kraken2 and pre-built database subset.

Task 3.4 Preprocessing Module (CS492): Integrate quality control tools for long reads. Handle compressed

formats.

Task 3.5 Kraken2 Integration: Interface with dockerized (CS491) then local (CS492) Kraken2. Implement

confidence scoring.

Task 3.6 Basecaller Integration (CS492): Integrate Icarus simulator or actual device. Convert raw signals to

FASTQ.

Task 3.7 Reference Database Management: CS491: prepare pre-built subset. CS492: implement full

management with import and update tools.

Task 3.8 Output Processing Module: Aggregate results, compute statistics, calculate confidence, generate

JSON/CSV output.

Task 3.9 Result Storage System: Implement file-based storage for analysis history and results.

Task 3.10 Resource Management: Monitor CPU/memory, prevent overflow, support configurable limits.

Task 3.11 Error Handling and Logging: Implement comprehensive error handling and structured logging.

Task 3.12 Testing Data Preparation: CS491: curate pre-made FASTQ. CS492: configure simulator.

57

Deliverables

D3.1: Development environment with CI/CD

D3.2: Snakemake workflow (demo and final versions)

D3.3: Dockerized Kraken2 (CS491)

D3.4: Preprocessing module (CS492)

D3.5: Kraken2 integration

D3.6: Basecaller integration (CS492)

D3.7: Database management system (CS492)

D3.8: Output processing module

D3.9: Result storage system

D3.10: Resource management system

D3.11: Logging framework

D3.12: Test datasets (CS491) and simulator (CS492)

WP 4: Frontend Development

Start date: October 14 2025 End date: April 15 2025

Leader:

Nazlı Apaydın

Members involved:

Ata Uzay Kuzey, Yunus Günay

Objectives: Create intuitive Electron.js interface for non-expert users. CS491: develop basic interface

showing workflow and results. CS492: refine based on feedback, add features, improve error handling.

Communicate uncertainty appropriately. Follow ISO 9241-210 user-centered design principles.

Tasks:

Task 4.1 Electron.js Setup: Initialize project structure. Configure build for cross-platform deployment.

Task 4.2 Analysis Management Interface: Create file upload, analysis history list, and reopen/export

features.

Task 4.3 Workflow Execution Interface: Display processing status, stage indicators, and completion

notifications.

Task 4.4 Result Visualization: Create tables, charts showing species with confidence scores. Color-code

confidence levels.

Task 4.5 Dataset Management Interface: Display database information. CS492: add FASTA import and

rebuild features.

Task 4.6 Notification System: Implement completion, error, and status notifications.

Task 4.7 Settings Interface: Configure resources, adjust parameters, view system info.

Task 4.8 Help System: Create tooltips, contextual help, and troubleshooting guide.

Task 4.9 Error Handling (CS492): Enhance validation and user-friendly error messages.

58

Task 4.10 UI Polish (CS492): Refine based on feedback. Improve visual design and accessibility.

Deliverables

D4.1: Electron.js application framework

D4.2: Analysis management interface

D4.3: Workflow execution interface

D4.4: Result visualization components

D4.5: Database management interface

D4.6: Notification system

D4.7: Settings panels

D4.8: Help system

D4.9: Enhanced error handling (CS492)

D4.10: Polished UI (CS492)

WP 5: Testing & Integration

Start date: December 1 2025 End date: May 15 2025

Leader:

 Yunus Günay

Members involved:

All team members

Objectives: Ensure continuous quality assurance for both demo and final versions. Conduct unit, integration,

system, and performance testing. Develop 50+ test cases for Detailed Design Report. Execute tests with

results for Final Report. Coordinate integration of separately developed components.

Tasks:

Task 5.1 Test Planning: Develop test plan for both CS491 and CS492 phases.

Task 5.2 Unit Testing: Create unit tests for backend modules. Achieve good coverage.

Task 5.3 Integration Testing - Demo (CS491): Test dockerized setup, pre-made file processing,

frontend-backend communication.

Task 5.4 Integration Testing - Final (CS492): Test basecaller integration, local Kraken2, database

operations.

Task 5.5 System Testing - Demo: End-to-end testing with curated datasets. Practice demo execution.

Task 5.6 System Testing - Final: Comprehensive testing with simulator/device. Test diverse scenarios and

file sizes.

Task 5.7 Test Case Specification (CS492): Develop test cases with ID, type, objective, procedure, expected

results, priority.

Task 5.8 Performance Testing: Measure processing times, memory usage, throughput. Compare demo vs

final performance.

Task 5.9 Accuracy Validation: Validate classification with known compositions. Document accuracy metrics.

59

Task 5.10 Non-Functional Testing: Test usability, reliability, offline operation, error handling, cross-platform.

Task 5.11 Test Execution and Documentation: Execute all cases. Document results with pass/fail status

and bug tracking.

Task 5.12 Demo Verification (CS491): Intensive testing of demo configuration for reliable presentation.

Task 5.13 Regression Testing (CS492): Ensure existing functionality remains working as the system

evolves.

Task 5.14 Integration Coordination: Coordinate merging of backend and frontend. Resolve interface issues.

Deliverables

D5.1: Test Plan

D5.2: Unit test suite

D5.3: Demo integration tests

D5.4: Final integration tests

D5.5: Demo system test results

D5.6: Final system test results

D5.7: Test Case Specifications (50+)

D5.8: Performance reports

D5.9: Accuracy validation report

D5.10: Non-functional test results

D5.11: Test execution log for Final Report

D5.12: Demo verification report

D5.13: Regression test results

D5.14: Integration coordination log

WP 6: Demo Preparation

Start date: November 28 2025 End date: December 22 2025

Leader:

Yunus Günay

Members involved:

All team members

Objectives: Prepare polished CS491 demo presentation. Create dockerized setup with pre-made data.

Develop presentation materials and conduct rehearsals. This separate package exists because demo

implementation differs from the final system.

Tasks:

Task 6.1 Docker Configuration: Finalize container with Kraken2 and ~20-30 pathogen genomes. Test

reliability.

Task 6.2 Dataset Curation: Create pre-made FASTQ files representing realistic scenarios. Document

expected results.

60

Task 6.3 Demo Pipeline Integration: Integrate dockerized Kraken2 with simplified workflow. Optimize for

demo timing.

Task 6.4 Frontend Polish: Refine UI for professional presentation.

Task 6.5 Presentation Slides: Create 2-4 slides with elevator pitch, status dashboard, architecture diagram,

and roadmap.

Task 6.6 Demo Script: Write detailed script with speaking roles for all members. Assign responsibilities.

Task 6.7 Backup Plans: Prepare video, screenshots, and explanations if live demo fails.

Task 6.8 Environment Setup: Prepare laptops with a configured system. Create a setup checklist.

Task 6.9 Limitations Documentation: Document what is simplified for demo vs final version.

Deliverables

D6.1: Dockerized Kraken2 with database

D6.2: Pre-made FASTQ files with documentation

D6.3: Demo-ready integrated system

D6.4: Polished demo UI

D6.5: Presentation slides

D6.6: Demo script

D6.7: Backup materials

D6.8: Rehearsal recordings

D6.9: Setup checklist

D6.10: CS491 Demo Presentation

WP 7: Documentation & Course Deliverables

Start date: September 2 2025 End date: May 15 2025

Leader:

 Ata Uzay Kuzey

Members involved:

All team members

Objectives: Produce all required CS491 and CS492 course deliverables. Maintain individual logbooks

throughout the project. Develop a comprehensive user manual. Create technical documentation. This final

package integrates all project work into formal reports.

Tasks:

Task 7.1 Individual Logbooks (Continuous): Each member maintains Google Docs logbook with timeline,

reflections, work samples, and progress. Update weekly.

Task 7.2 Project Information Form (September): Submit form with project name, description, supervisor,

and website.

Task 7.3 Project Specification Document (November): [COMPLETED ✓] Introduction, constraints,

standards, requirements, feasibility.

61

Task 7.4 Analysis and Requirements Report (December - CS491): Comprehensive report with current

system, proposed system, models (scenarios, use cases, class diagrams, activity/sequence/state diagrams,

UI mockups), factors consideration, constraints, risks/B plan, project plan with Gantt chart, teamwork strategy,

ethics, learning plan.

Task 7.5 Detailed Design Report (March/April - CS492): Design goals, architecture analysis, subsystem

decomposition, 50+ test cases, factors consideration, teamwork details.

Task 7.6 Final Project Report (May - CS492): Requirements, architecture, implementation details, test

results, maintenance plan, factors/ethics/teamwork/meeting objectives, new knowledge acquired.

Task 7.7 User Manual: Installation instructions, getting started, workflow guide, result interpretation,

troubleshooting, FAQ, sample scenarios.

Task 7.8 Technical Documentation: Architecture docs, API/interface docs, code comments, workflow

documentation.

Task 7.9 Project Website: Team info, project description, GitHub links, documentation downloads, demo

video, presentations.

Task 7.10 Presentation Materials: CS491 and CS492 slides with demo scripts.

Task 7.11 Standards Compliance: Document IEEE 830, ISO/IEC 25010, UML 2.5.1, ISO 9241-210

compliance.

Task 7.12 Final Package Assembly (May): Compile all reports, manual, code, installers, and documentation.

Deliverables

D7.1: Individual logbooks (continuous)

D7.2: Project Information Form

D7.3: Project Specification Document

D7.4: Analysis and Requirements Report (CS491)

D7.5: Detailed Design Report (CS492)

D7.6: Final Project Report (CS492)

D7.7: User Manual

D7.8: Technical Documentation

D7.9: Project Website

D7.10: Presentation Materials

D7.11: Standards Compliance Documentation

D7.12: Final Documentation Package

62

4.4​ Ensuring Proper Teamwork

To handle the broad set of requirements for the project the team employs:

●​ Regular Meetings: Weekly meetings both face to face and online, code milestones to complete

before deadlines and frequent meetings with the advisor for feedback and addressing of

emergency issues with code.

●​ Clear Role Assignments: The role assignments are clear with clear mission boundaries between

the roles. Frontend engineers ensure the simplicity and usability of the application, backend

engineers create an efficient workflow for the integration and running of the project while the

hardware engineers will work on the GPU mapping of the classification algorithm.

●​ Collaboration and Deployment Tools: Github issues and issue boards for the milestones and

code completion, github for version control and code sharing alongside slack for team

coordination.

Task assignments of members:

●​ Ege Ateş:

○​ Ege will focus on backend development, including the Snakemake workflow,

implementing services and integrating the databases.

○​ He will also work on the integration of signal simulators for reads and ensure the overall

scalability of the project.

●​ Nazlı Apaydın:

○​ Nazlı will focus on the frontend development, focusing on creating a user friendly design

for the application with clear instructions and flows.

○​ She will also work on creating the web depictions of the data obtained from the reads,

representing them in easy to understand graphs.

●​ Ata Uzay Kuzey:

○​ Ata will focus on the frontend development and the creation of web reports and graphs

from obtained reads.

○​ He will manage the robust integration of backend services and the local AI assistant to

provide human readable results for the end user.

○​ Additionally he leads the continuous documentation and course deliverables webpage.

●​ Yunus Günay:

○​ Yunus will act as the lead for testing and integration, ensuring continuous quality

assurance through unit, system and performance testing.

○​ He is responsible for the demo preparations, creation of the dockerized setups and the

environments.

○​ As a cross functional member, he coordinates the merging of backend and frontend

components and resolves interface issues. He contributes to the frontend work as well.

●​ Yiğit Ali Doğan:

○​ Yiğit leads the system design and architecture, creating high level UML models and

subsystem decompositions.

○​ He will work on the backend services, creating the Snakemake workflow and integrating

services.

○​ Furthermore, he will specialize in the hardware/software mapping, specifically the

NVIDIA CUDA acceleration for the classification algorithm and increased performance.

63

4.5​ Ethics and Professional Responsibilities

​ Pathogenius must uphold high ethical standards to ensure its reliability and performance in

critical clinical and field settings:

●​ Privacy and Confidentiality: Since the clinical samples may contain human host DNA, the

system is constrained to process all data transiently on the local device in order to ensure that

the sensitive genomic information is not exposed or uploaded to external servers.

●​ Decision Support vs Diagnosis: The system is strictly defined as a decision support tool rather

than a definitive and certain diagnostic device. The interface clearly presents results as

probabilistic evidence to prevent the over-interpretation by non expert users.

●​ Transparency and Uncertainty: Species level results are communicated with appropriate

uncertainty markers and confidence scores. Low confidence scores findings are visually

distinguished to support medical decision making.

●​ Equitable Access: To ensure accessibility in resource limited settings, the software is free of

charge and does not rely on recurring subscription costs when used in offline mode.

●​ Professional Conduct: The development process adheres to recognized engineering standards

including but not limited to: IEEE 830 for requirement specification and ICO/IEC 25010 for

software quality models.

4.6​ Planning for New Knowledge and Learning Strategies

Continuous learning is critical to navigate the evolving requirements of bioinformatics and

portable diagnostics hardware:

●​ Ongoing Research and Training: Members continuously study metagenomics

classification literature and validate Kraken2 or other classification algorithms’

performance on modest hardware.

●​ Knowledge Sharing: Team members utilize individual logbooks and weekly meetings to

share best practices in Snakemake workflow management and user centered design.

●​ Technical Mastery: Hardware specialists are acquiring NVIDIA CUDA skills to transition

from CPU based tasks to GPU accelerated processing.

●​ Iterative Improvement: The phased development approach uses the CS491 milestones

and additional meetings with our advisor to gather performance feedback, which informs

technical refinements for the final implementation.

64

5​ Glossary

1.​ FASTQ: A sequencing read file format that stores nucleotide sequences with per-base quality

scores.

2.​ FASTA: A sequence file format typically used for storing reference genome sequences.

3.​ Read: A single nucleotide sequence produced by a sequencing device and stored in a FASTQ

file.

4.​ Sequencing: The process of generating nucleotide read data from biological samples.

5.​ Long-Read Sequencing: Sequencing that produces long read fragments (used as the system’s

primary input style).

6.​ Kraken2: A k-mer based taxonomic classification tool used as the main classifier in the pipeline.

7.​ k-mer: A substring of length k extracted from reads/genomes, used for matching and

classification.

8.​ Index (k-mer index): A Kraken2-compatible database structure enabling fast k-mer lookups

during classification.

9.​ Snakemake: A workflow engine used to coordinate and execute the analysis pipeline

reproducibly.

10.​Workflow: An ordered set of steps (rules) executed to process inputs into final outputs.

11.​ Pipeline: The end-to-end chain of preprocessing, classification, and post-processing stages.

12.​Electron.js: The framework used to build the application interface.

13.​Offline Execution: System operation without requiring internet connectivity during analysis.

14.​Reference Database: Locally stored genomes used by Kraken2 to classify reads.

15.​Metagenomic Analysis: Sequencing-based analysis of genetic material from mixed samples to

identify organisms.

16.​Taxonomic Classification: Assigning reads to taxa such as species based on sequence

similarity evidence.

17.​NVIDIA CUDA: The GPU computing platform referenced for future acceleration support.

18.​NCBI (National Center for Biotechnology Information): A source of curated genomic

resources used for building local reference databases.

19.​GPU: The graphics processor targeted for acceleration in later project stages.

20.​CPU: The host processor used for analysis when GPU acceleration is unavailable or disabled.

21.​VRAM: GPU memory that can limit accelerated processing for large workloads.

22.​Sequencing Depth: The total number of reads representing a sample, influencing detection

sensitivity.

65

23.​False Positive: An incorrect classification where a read is assigned to a taxon not actually

present in the sample.

24.​Confidence Score: A numerical measure indicating the reliability of a taxonomic classification

result.

25.​Low-Abundance Pathogen: An organism present at a small proportion within a sample, making

detection more difficult.

26.​Preprocessing: Initial analysis steps applied to raw FASTQ data, such as quality filtering and

cleanup, before classification.

27.​Post-Processing: Analysis steps applied after classification to aggregate results, compute

statistics, and generate reports.

28.​Batch Processing: Executing analysis on subsets of reads sequentially to manage memory and

resource constraints.

29.​ Index Building: The process of converting reference genomes into a searchable k-mer index for

Kraken2.

30.​Deterministic Execution: Pipeline behavior that produces identical outputs when given the

same inputs and reference data.

66

6​ References

[1] Y. L. Oon, Y. S. Oon, M. Ayaz, M. Deng, L. Li, and K. Song, “Waterborne pathogens detection

technologies: advances, challenges, and future perspectives,” Frontiers in Microbiology, vol. 14, Art. no.

1286923, Nov. 2023, doi: 10.3389/fmicb.2023.1286923.

[2] Bio-Rad Laboratories, “Pathogen detection,” Bio-Rad Laboratories, Online. Available:

https://www.bio-rad.com/en-tr/a/ls/pathogen-detection. Accessed: Dec. 18, 2025.

[3] Norgen Biotek Corp., “Waterborne pathogen detection,” Norgen Biotek, Online. Available:

https://norgenbiotek.com/category/waterborne-pathogen-detection. Accessed: Dec. 18, 2025.

[4] K. Sandås, J. Lewerentz, E. Karlsson, L. Karlsson, D. Sundell, K. Simonyté-Sjödin, and A. Sjödin,

“Nanometa Live: a user-friendly application for real-time metagenomic data analysis and pathogen

identification,” Bioinformatics, vol. 40, no. 3, Art. no. btae108, Mar. 2024, doi:

10.1093/bioinformatics/btae108.

[5] L. E. Braley, J. B. Jewell, J. Figueroa, J. L. Humann, D. Main, G. A. Mora-Romero, N. Moroz, J. W.

Woodhall, R. A. White III, and K. Tanaka, “Nanopore sequencing with GraphMap for comprehensive

pathogen detection in potato field soil,” Plant Disease, vol. 107, no. 8, pp. 2288–2295, Aug. 2023.

[6] International Organization for Standardization, Systems and software engineering—Systems and

software Quality Requirements and Evaluation (SQuaRE)—System and software quality models, ISO/IEC

25010:2011, 2011.

[7] Object Management Group, Unified Modeling Language (UML) Specification, Version 2.5.1, Dec.

2017. [Online]. Available: https://www.omg.org/spec/UML/2.5.1

[8] International Organization for Standardization, Systems and software engineering—Life cycle

processes—Requirements engineering, ISO/IEC/IEEE 29148:2018, 2018.

67

	1​Introduction
	2​Current System
	3​Proposed System
	3.1​Overview
	3.2​Functional Requirements
	3.2.1 Main Requirements
	3.2.1.1 Analysis & Workflow Management
	3.2.1.2 FASTQ Processing & Classification
	3.2.1.3 Dataset Management
	3.2.1.4 Notifications
	3.2.1.5 User Registration and Authentication

	3.2.2 Secondary Features

	3.3​Non-Functional Requirements
	3.3.1 Usability
	3.3.2 Reliability
	3.3.3 Performance
	3.3.4 Supportability
	3.3.5 Scalability

	3.4​Pseudo Requirements
	3.5​System Models
	3.5.1​Scenarios
	3.5.2​Use Case Model
	3.5.3​Object and Class Model
	3.5.4​Dynamic Models
	3.5.4.1​Activity Diagrams
	3.5.4.2​State Diagrams
	
	3.5.4.3​Sequence Diagrams

	3.5.5​User Interface

	4​Other Analysis Elements
	4.1​Consideration of Various Factors in Engineering Design
	4.1.1​Constraints
	4.1.2​Standarts
	4.1.2.1​IEEE 830
	4.1.2.2​ISO/IEC 25010
	4.1.2.3​UML 2.5.1 - Unified Modeling Language
	4.1.2.4​ISO 9241-210

	4.2​Risks and Alternatives
	4.2.1​Insufficient Classification Accuracy Due to Limited FASTQ Size
	4.2.2​Limited Interpretive Quality of Local Language Model
	4.2.3​GPU Memory Limitations
	4.2.4​Incomplete or Outdated Reference Databases
	4.2.5​False Positives Due to Shared k-mers and Taxonomic Ambiguity

	4.3​Project Plan
	4.4​Ensuring Proper Teamwork
	4.5​Ethics and Professional Responsibilities
	4.6​Planning for New Knowledge and Learning Strategies

	5​Glossary
	6​References

