Bilkent University
Department of Computer Engineering

Senior Design Project
T2504
Pathogenius

Analysis and Requirement Report

Nazli Apaydin 22202104
Ege Ates 22201914
Yigit Ali Dogan 22202329
Yunus Giinay 22203758
Ata Uzay Kuzey 22203050

Supervisor: Can Alkan
Course Instructors: Mert Bicakgl, llker Burak Kurt

19.12.2025

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfilment of the
requirements of the Senior Design Project course CS491/2.

Contents

1 Introduction
2 Current System
3 Proposed System
3.1 Overview
3.2 Functional Requirements
3.2.1 Main Requirements
3.2.1.1 Analysis & Workflow Management
3.2.1.2 FASTQ Processing & Classification
3.2.1.3 Dataset Management
3.2.1.4 Notifications
3.2.1.5 User Registration and Authentication
3.2.2 Secondary Features
3.3 Non-Functional Requirements
3.3.1 Usability
3.3.2 Reliability
3.3.3 Performance
3.3.4 Supportability
3.3.5 Scalability
3.4 Pseudo Requirements
3.5 System Models
3.5.1 Scenarios
3.5.2 Use Case Model
3.5.3 Object and Class Model
3.5.4 Dynamic Models
3.5.4.1 Activity Diagrams
3.5.4.2 State Diagrams
3.5.4.3 Sequence Diagrams
3.5.5 User Interface
4 Other Analysis Elements

4.1 Consideration of Various Factors in Engineering Design

4.1.1 Constraints

4.1.2 Standarts
4.1.2.1 |EEE 830
4.1.2.2 1ISO/IEC 25010

4.1.2.3 UML 2.5.1 - Unified Modeling Language

4.1.2.41S0 9241-210
4.2 Risks and Alternatives

4.2.1 Insufficient Classification Accuracy Due to Limited FASTQ Size
4.2.2 Limited Interpretive Quality of Local Language Model

4.2.3 GPU Memory Limitations

© 0 00 N N OO oo oo A DS

O O O O O B B B PBA P OO W WDDDNDN-"A = A A -
_,~ OO0 O 00 VwWC O NNNANPP 2000 NO”C WO DNN 20O oo

(&)]
N —

4.2.4 Incomplete or Outdated Reference Databases
4.2.5 False Positives Due to Shared k-mers and Taxonomic Ambiguity
4.3 Project Plan
4.4 Ensuring Proper Teamwork
4.5 Ethics and Professional Responsibilities
4.6 Planning for New Knowledge and Learning Strategies
5 Glossary
6 References

51
52
53
63
64
64
65
67

Analysis and Requirement Report

Project Short-Name: Pathogenius

1 Introduction

The rapid advances in sequencing technologies have enabled the analysis of genetic
material obtained from clinical and environmental samples. Despite this progress, the software
ecosystems required to interpret sequencing data remain complex, computationally expensive,
and often dependent on high-performance servers or continuous cloud connectivity. These
requirements pose a significant barrier in field settings, emergency response scenarios, and
resource-limited environments, where the lack of access to metagenomic analysis can hinder
timely pathogen identification and critical decision making.

Pathogenius addresses this challenge by providing a portable, offline metagenomic
analysis platform capable of operating on modest local hardware such as consumer grade
laptops. The system transforms raw long-read sequencing data into clear, species-level
identification results through a structured and automated analysis workflow. At its core,
Pathogenius employs Snakemake to coordinate a modular pipeline including quality control,
preprocessing and taxonomic classification. The classification stage relies on Kraken2, a
memory efficient k-mer based classifier that compares read fragments against a locally stored
reference database, enabling fast and reproducible analysis without reliance on external
services.

To ensure accessibility to non-expert users, Pathogenius provides a locally running
Electron.js based graphical interface that abstracts complex command-line operations and
offers real time feedback on system resources and workflow progress. A key innovation of the
platform is its integration of a local Al assistant, implemented using small or quantized
language models, which translates technical analysis results into readable and actionable
summaries while preserving full offline operation. This design ensures that sensitive data,
including potential human host DNA, remains transient and securely contained within the local
environment.

Although the current implementation is optimized for CPU-based execution, the system
architecture supports future integration of NVIDIA CUDA acceleration, enabling performance
scaling on compatible hardware. Positioned as a discovery-oriented decision support tool
rather than a definitive diagnostic service, Pathogenius is intended for use especially in water
based pathogen surveillance, emergency response operations, field hospitals, and clinics
operating under infrastructure constraints. By combining unbiased metagenomic analysis,
offline capability, and intuitive visualization, the platform bridges the gap between advanced
genomic methods and practical field deployment.

2 Current System

Traditional pathogen detection approaches suffer from structural limitations that restrict
their suitability for on-site and discovery oriented use. PCR is highly sensitive but
laboratory-bound, gPCR and ddPCR are powerful yet costly and operationally complex, and
NGS-based metagenomics enables unbiased discovery but typically requires substantial
computational resources and expert interpretation [1]. As a result, existing systems built on
these methods tend to optimize for a single dimension while failing to provide a portable and
user-friendly solution. Pathogenius addresses these limitations by combining portable

4

long-read sequencing with an offline workflow, automated analysis workflow and an integrated
user interface that enables pathogen identification without reliance on advanced bioinformatics
expertise.

Commercial solutions such as Bio-Rad’s IQ-Check tests [2], for example, rely on
RT-gPCR workflows with carefully designed primers and probes to detect predefined
pathogens, delivering results within 12-24 hours depending on the sample type. However, their
primary weakness lies in their target specific design. Only anticipated pathogens can be
detected, and assay redesign is required when new organisms are involved. Pathogenius
overcomes this limitation by employing an unbiased metagenomic approach, in which raw
FASTQ reads are classified against a locally stored reference database. This enables
simultaneous screening of multiple organisms without prior assumptions about pathogen
identity, making Pathogenius suitable for discovery driven field scenarios.

Similarly, Norgen Biotek’s pathogen detection kits [3] follow a similar PCR-centered
paradigm and depend on predefined target pathogens. These methods require thermal cycling
equipment and rely on a steady supply of reagents, which restricts their flexibility in field
settings. In contrast, Pathogenius relies on a locally built and versioned reference index,
thereby recurring consumable costs and logistical dependencies after initial deployment.

Nanometa Live [4] represents one of the most advanced solutions for real-time
metagenomic visualization. However, it still exhibits key limitations when considered for field
deployment. lts operation assumes complex toolchain setup and command line driven
workflows, and its real-time analysis is constrained by batch processing and BLAST-based
validation, leading to increased latency on modest hardware. While highly effective for
monitoring and visualization, Nanometa Live primarily functions as an analysis dashboard
rather than a decision support system, and the interpretation of its analytical outputs remains
challenging for non-expert users. Pathogenius addresses these gaps by providing structured
result objects, confidence aware outputs, and intuitive visualizations, complemented by a local
Al module that converts technical outputs into readable summaries for end users.

Academic work based on Oxford Nanopore Technologies’ MinlON device [5] has
demonstrated that portable long-read sequencing can be used for offline, on-site pathogen
detection with locally curated reference databases. However, such pipelines remain research
oriented, requiring expert driven database curation, command-line execution, and manual
interpretation of raw results. Pathogenius builds on these validated foundations but shifts the
emphasis from technical feasibility to operational usability by integrating automated workflow
execution, efficient k-mer based classification, persistent analysis management, and
user-friendly interface.

3 Proposed System

3.1 Overview

Pathogenius is a modular metagenomic analysis platform that can run offline, designed
to transform raw sequencing output into actionable, species-level pathogen identification
through an automated local workflow. The system is organized as a set of cooperating layers,
including the sequencing environment, reference data management, workflow execution, and
frontend interaction. All components operate entirely within the local environment, ensuring
independence from external infrastructure and network connectivity.

At the core of Pathogenius lies a Snakemake based workflow layer that manages all
analysis steps through a reproducible pipeline. Raw FASTQ files generated in the sequencing
environment are first processed by a preprocessing component that performs quality control
and cleanup. In parallel, curated reference genomes stored locally in FASTA format are
processed by Kraken2's built-in database construction utilities to generate a
Kraken2-compatible k-mer index, which is managed as a dedicated index-building step within
the workflow. This locally generated index is stored and reused across analyses. Cleaned
reads are then classified using the Kraken2 classifier against the local index, producing
taxonomic assignments that are subsequently aggregated and processed to compute
confidence metrics and structured result files.

Pathogenius utilizes Electron.js to provide a locally running graphical interface that
enables users to select local input files, monitor real-time workflow execution, and interpret
analysis results. Processed outputs are transformed by an analyzer component into structured
result objects, which are then presented through visualization modules displaying species-level
findings using multiple chart types. To further ease interpretation for non-expert users,
Pathogenius integrates a local Al component that converts structured analytical results into
readable explanations and summaries, supporting informed interpretation while ensuring that
all data remains confined to the local system.

3.2 Functional Requirements

These requirements define the specific behaviours and services the system must provide.

3.2.1 Main Requirements

3.2.1.1 Analysis & Workflow Management

e FR-AM-001: The system shall store all completed analyses in a persistent
local database for authenticated users including analysis name, date and
status.

e FR-AM-002: The system shall display a comprehensive analysis history table
for authenticated users, showing analysis name, date, input file, and
processing status.

e FR-AM-003: The system shall allow users to assign custom names and
descriptions to analyses.

e FR-AM-004: The system shall provide search and filter capabilities, allowing
users to locate specific past analyses by criteria such as name, date or
detected pathogens.

e FR-AM-005: The system shall enable users to reopen completed analyses to
view results.

e FR-AM-006: The system shall allow users to delete analyses with confirmation

prompts.

FR-AM-007: The system shall support export of results and archiving multiple
analyses in different formats including PDF, JSON and CSV.

FR-AM-008: The system shall use an offline large language model to further
elaborate on the complex classification metrics into easy to read, human

readable summary paragraphs.

3.2.1.2 FASTQ Processing & Classification

FR-FP-001: The system shall accept long read FASTQ format files
(compressed and uncompressed) as primary input.

FR-FP-002: The system shall validate input files and display file metadata
before processing.

FR-FP-003: The system shall calculate and report confidence scores for each
species identification, distinguishing between the high and low confidence
scores for the analyses.

FR-FP-004: The system shall coordinate the analysis pipeline using the
Snakemake workflow engine, ensuring deterministic execution of
preprocessing, classification and output stages.

FR-FP-005: The system shall support checkpoint and resume functionality,
allowing analyses interrupted by the system events to continue from the last
successful workflow stage.

FR-FP-006: The system shall generate preprocessing and classification
quality reports.

FR-FP-007: The system shall support batch processing of multiple FASTQ
files to analyse and depict the results of all the input files.

3.2.1.3 Dataset Management

FR-DM-001: The system shall maintain a local reference database composed
of species specific FASTA files curated from the NCBI resources.

FR-DM-002: The system shall provide functionality to update the database by
querying an update server when network is available or importing from custom
FASTA files locally.

FR-DM-003: The system shall display information about the current database

version including the number of species, last update date, and database size.

e FR-DM-004: The system shall support manual database curation, allowing
users to add, remove, or modify taxonomic information and associated

genomic data for specific species.
3.2.1.4 Notifications

e FR-NT-001: The system shall provide immediate visual notifications upon the
successful completion of an analysis workflow. This includes updating the
status in the analysis history and triggering a completion banner on the
dashboard.

e FR-NT-002: In the event of a processing failure, the system shall alert the user
with descriptive actionable error messages.

e FR-NT-003: For long running operations like k-mer classification or index
building, the system shall display real time progress indicators. These updates
must include the current workflow stage and the completion percentage.

e FR-NT-004: The system shall maintain a persistent history of all system

notifications, accessible via a dedicated section.
3.2.1.5 User Registration and Authentication

e FR-UA-001: The system shall provide user registration functionality allowing
new users to create accounts with username and password.The system must
validate that the username is unique and the password is secure.

e FR-UA-002: User authentication is not mandatory. The system will support a
‘Guest Mode’ for immediate offline use. Authenticated users shall gain access
to their local history.

e FR-UA-003: The system shall authenticate users through a login interface with
secure credential validation.

e FR-UA-004: The system shall store user credentials securely using
encryption.

e FR-UA-005: The system shall maintain separate user workspaces ensuring
data privacy between users.

o FR-UA-006: The system shall accommodate multiple users in a single device

with encryption to ensure that the users can keep their analysis secure.

3.2.2 Secondary Features

3.2.2.1 Realtime Data Display

e FR-RT-001: The system shall provide a real time progress bar indicating active
Snakemake stage and the completion percentage.

e FR-RT-002: The interface shall dynamically update a preliminary results table,
showing species names and use counts as they are identified.

e FR-RT-003: The system shall display live telemetry cards displaying real time
utilization metrics for the host CPU/GPU usage and available RAM.

e FR-RT-004: The system shall provide estimated time remaining for ongoing
analyses, adjusting the prediction based on the analyses.

e FR-RT-005: The system shall update classification statistics dynamically as
processing progresses.

e FR-RT-006: The system shall display the number of reads processed per
minute during analysis to provide feedback on the analysis efficiency.

e FR-RT-007: The system shall show preliminary results for completed workflow
stages while subsequent stages continue processing.

3.2.2.2 GPU Acceleration

e FR-GPU-001: In later stages the system shall detect available NVIDIA
CUDA-compatible GPUs and their available VRAM.

e FR-GPU-002: The system shall provide an user controlled option to enable or
disable GPU acceleration for classification tasks.

e FR-GPU-003: The system shall automatically optimize workload distribution
between CPU and GPU when acceleration is enabled.

e FR-GPU-004: The system shall fallback to CPU-only processing if GPU
acceleration fails or is unavailable.

e FR-GPU-005: The system shall display GPU utilization metrics during
accelerated processing.

e FR-GPU-006: The system shall support CUDA-accelerated k-mer matching

operations for improved performance.

3.3

Non-Functional Requirements

These requirements define the quality attributes and operational constraints of Pathogenius,

categorized according to the ISO/IEC 25010 software quality standard.

3.3.1 Usability

e NFR-USE-01: The system shall provide a 100% graphical user interface (GUI) via

Electron.js for all operations, ensuring that field personnel never need to interact with
the underlying command-line or terminal.

NFR-USE-02: The interface shall provide continuous visual feedback, including
dynamic progress bars and stage-specific status indicators during long-running
metagenomic workflows.

NFR-USE-03: The results dashboard must visually differentiate between high and
low-confidence species identifications using color-coding or uncertainty markers to
support accurate clinical interpretation.

NFR-USE-04: The system shall deliver descriptive, actionable error messages that

specify the nature of the failure to facilitate rapid user-level troubleshooting.

3.3.2 Reliability

NFR-REL-01: The system must maintain full functionality for preprocessing, k-mer
classification, and Al summarization in environments with no internet connectivity.
NFR-REL-02: The deployment package must bundle all necessary bioinformatics
binaries, reference indices, and software dependencies to ensure complete
autonomous operation upon installation.

NFR-REL-03: The system shall handle malformed or truncated FASTQ entries by
logging the specific error and skipping only the affected read to prevent entire analysis
termination.

NFR-REL-04: The system must ensure deterministic execution, producing bit-identical
identification reports when provided with identical input data and reference databases.
NFR-REL-05: The system shall strictly treat original raw FASTQ files as read-only,
ensuring no modification or deletion occurs during any stage of the Snakemake

pipeline.

10

3.3.3 Performance

e NFR-PER-01: The analysis engine must be optimized to operate on mid-range,
consumer-grade laptops without requiring high performance computing systems.

e NFR-PER-02: The system shall allow users to set memory caps for the classification
algorithms to prevent the process from exceeding the host machine’s physical RAM.

e NFR-PER-03: Preprocessing and classification must be completed within a timeframe
that allows for rapid field decision making, minimizing latency.

e NFR-PER-04: Computationally intensive tasks shall be executed as background
processes to ensure the Electron frontend remains responsive to user navigation

during the analysis.
3.3.4 Supportability

e NFR-SUP-01: The analysis pipeline must be implemented using modular Snakemake
rules to facilitate the independent update or replacement of individual bioinformatics
tools without system restructuring.

e NFR-SUP-02: The system shall generate persistent, human readable session logs that
record timestamps, analysis parameters, and hardware utilization for diagnostic
purposes.

e NFR-SUP-03: The system shall be deployable as a containerized application or
managed environment to ensure consistent performance across different OS platforms

like Windows or Linux.
3.3.5 Scalability

e NFR-SCA-01: The platform must support processing FASTQ files ranging from 1 MB to
10 GB, scaling its resource usage based on available disk space and VRAM.

e NFR-SCA-02: Upon initialization, the system must automatically detect available
hardware resources, including the number of CPU cores and NVIDIA CUDA
compatible GPUs.

e NFR-SCA-03: The classification module shall dynamically utilize multi threaded CPU
processing or GPU accelerated kernels depending on detected hardware capability.

e NFR-SCA-04: The interface must allow users to import and index new FASTA files into
the reference database to detect emerging pathogens without requiring core software

updates.
11

3.4 Pseudo Requirements

A. Version Control and Data Management:

e Git will be used as the primary version control system to manage source code and
documentation.

e GitHub will serve as the central repository for the project and will also host the project
website via Github Pages (https://patho-genius.github.io).

e GitHub Issues will be used to track tasks, bugs, feature requests, and overall project
progress.

B. Technology Stack and Development Tools

e Snakemake will be employed to implement the analysis workflow, ensuring
reproducibility and modularity.

e Kraken2 will be used as the primary taxonomic classification engine.

e Local reference databases will be built from NCBI FASTA files using an index builder
component.

e Electron.js will be used to develop the frontend.

e NVIDIA CUDA will be used to support GPU-accelerated classification in later stages of
the project.

C. Offline Execution

e The system will be designed to operate fully offline after installation, without requiring
internet connectivity for core functionality.

e Reference databases and generated indexes will be stored locally and reused across
analyses.

D. Atrtificial Intelligence and Result Interpretation

e An open-source local language model will be integrated to generate readable
summaries and explanations from structured analysis outputs.

e All language model inference will be performed locally and will not rely on external
APIs or cloud-based services. Internet connectivity, when available, may be used only
to select or update which local model is used.

e Generated explanations will be derived solely from locally produced analysis results to
ensure data privacy.

E. Testing and Validation

e Unit testing will be performed for core components such as preprocessing, indexing,
classification, and result parsing.

e Integration testing will be conducted to validate correct interaction between workflow
steps and the frontend.

e Sample FASTQ datasets will be used to verify deterministic behavior and
reproducibility of analysis results.

F. Collaboration and Communication
e Team communication will be conducted using platforms such as WhatsApp for
asynchronous discussions.
12

e Online meeting tools such as Zoom or Google Meet will be used for synchronous
project meetings and reviews.

3.5 System Models

3.5.1 Scenarios

Scenario 1: User Login Process

Actor User

Entry Condition(s) The actor opens the Pathogenius application and views the login
page. No user should be logged in.

Exit Condition(s) The actor is successfully logged into the system and redirected to
the dashboard.

Flow of Events 1. The actor enters their username in the username field.

2. The actor enters their password in the password field.

3. The actor clicks the “Login” button.

4. The system validates the provided credentials against the
authentication service.

9. The system creates a session with appropriate permissions based
on the user’s role.

6. The actor is redirected to the dashboard with their profile
information displayed in the sidebar.

Alternative Flow

1. The actor provides incorrect username or password.
2. The system denies access and displays an error message.
3. The form remains on the login page, allowing retry.

Scenario 2: User Sign in Process

Actor User

Entry Condition(s) T.he gomputer is connected to the Internet and the actor opens the
sign in page.

Exit Condition(s) The actor successfully creates a new user.

Flow of Events 1. The actor enters their username in the username field.

2. The actor enters their password in the password field.

3. The actor enters their password in the enter your password again
field.

4. The actor clicks the “Sign in” button.

5. The system validates that the username does not exist and the
passwords are identical.

6. The system registers the new user to the system.

13

7. The actor is redirected to the login page.

Alternative Flow

1. The actor provides an already existing username or enters
different passwords.

2. The system denies the action and displays an appropriate error
message.

3. The form remains on the sign in page, allowing retry.

Scenario 3: Guest Mode Login
Actor User
Entry Condition(s) The actor opens the Pathogenius application and needs
offline/emergency access.
Exit Condition(s) The actor enters the system in guest mode with limited permissions.
Flow of Events 1. The actor clicks the “Continue as Guest” button on the login page.
2. The system creates a guest session with read and analyze
permissions.
3. The actor is redirected to the dashboard as “Guest User.”
4. The system tracks analyses created during the guest session
locally.
Scenario 4: User Logout
Actor User
Entry Condition(s) The actor is logged into the system.
Exit Condition(s) The actor is successfully logged out and returned to the login page.
Flow of Events 1. The actor clicks the logout button in the sidebar.
2. The system terminates the current session.
3. The system clears user state and session data.
4. The actor is redirected to the login page.
Scenario 5: View Dashboard
Actor User
Entry Condition(s) The actor is logged into the system.
Exit Condition(s) The actor views the system overview with resource statistics and

running analysis status.

14

Flow of Events 1. The actor navigates to the “Dashboard” section via the sidebar.
2. The system retrieves and displays current system statistics (RAM
usage, CPU usage).

3. The system checks for any running analyses.
4. If an analysis is running, the system displays a progress banner
with analysis name, status, and completion percentage.

Scenario 6: Create New Analysis - Select Input Files

Actor User

Entry Condition(s) The actor is logged in and navigates to the “New Analysis” section.

Exit Condition(s) The actor has selected one or more FASTQ files for analysis.

Flow of Events 1. The actor clicks the “Select Files” button or drags files into the

upload zone.

2. The system opens a file selection dialog filtered for FASTQ files.
3. The actor selects one or more FASTQ files (Nanopore-style long
reads).

4. The system displays the selected files in a list with filenames.

5. The actor proceeds to the next configuration step.

Alternative Flow
(Drag and Drop)

1. The actor drags FASTQ files from their file system into the upload
zone.

2. The system highlights the drop zone during the drag operation.

3. The system processes the dropped files and displays them in the
file list.

Alternative Flow (No
Files Selected)

1. The actor attempts to proceed without selecting files.

2. The system displays an alert: “Please select at least one FASTQ
file.”

3. The actor remains on the file selection step.

Scenario 7: Import Custom Database

Actor User

Entry Condition(s) The actor is logged in with admin privileges and navigates to the
Database section.

Exit Condition(s) A custom reference database is imported into the system.

Flow of Events

1. The actor navigates to the “Database” section.

2. The actor clicks the “Import Custom Database” button.
3. The system opens a folder selection dialog.

4. The actor selects a folder containing FASTA files.

15

5. The system validates the selected folder structure.
6. The system begins the database import process.
7. The system displays a success message upon completion.

Alternative Flow

1. The selected folder does not contain valid database files.
2. The system displays an error.
3. The actor is prompted to select a different folder.

Scenario 8: Configure Analysis Parameters

Actor User

Entry Condition(s) The actor has selected input files in Step 1 of the analysis wizard.
Exit Condition(s) The actor has configured all analysis parameters.

Flow of Events

1. The actor enters an analysis name (e.g., “Patient_001_Sample”).
2. The actor selects a sample type from the dropdown (Clinical
Sample, Environmental, Food Safety, Other).

3. The actor selects a reference database (NCBI RefSeq 2025,
Bacteria Only, Viral Only, Custom Database).

4. The actor adjusts the confidence threshold using the slider
(default: 0.7).

5. The actor proceeds to the review step.

Alternative Flow

1. The actor attempts to proceed without entering an analysis name.

2. The system displays an alert: “Please enter an analysis name.”
3. The actor remains on the configuration step.

Scenario 9: Review and Start Analysis

Actor User

Entry Condition(s) The actor has completed configuration in the analysis wizard.

Exit Condition(s) The pathogen analysis is successfully started and the Snakemake

workflow begins.

Flow of Events

1. The system displays a summary of the analysis configuration
(name, files, sample type, database).

2. The actor reviews the configuration details.

3. The actor clicks the “Start Analysis” button.

4. The system creates an output directory for the analysis results.
5. The system generates a Snakemake configuration file.

6. The system initiates the Snakemake workflow with Kraken2
classification.

16

7. The actor is redirected to the Results page to monitor progress.

Scenario 10: Monitor Running Analysis

Actor User

Entry Condition(s) An analysis has been started and is currently running.

Exit Condition(s) The actor monitors the analysis progress in real-time.

Flow of Events 1. The actor views the running analysis banner on the Dashboard or

Results page.
2. The system displays the analysis name, current status, and
progress percentage.
3. The system updates the progress bar as the workflow progresses
through stages:

- Preprocessing (Quality filtering reads)

- Classifying (Running Kraken2 classification)

- Processing (Processing classification results)

- Finalizing (Generating reports)
4. Upon completion, the system updates the status to “Completed”
and moves the analysis to history.

Alternative Flow

1. The analysis encounters an error during processing.

2. The system updates the status to “Failed” and displays the error
message.

3. The analysis is moved to history with failed status.

Scenario 11: Cancel Running Analysis

Actor User

Entry Condition(s) An analysis is currently running.

Exit Condition(s) The running analysis is cancelled.

Flow of Events 1. The actor navigates to the Results page and locates the running

analysis.

2. The actor clicks the “Cancel” button next to the running analysis.
3. The system prompts for confirmation: “Are you sure you want to
cancel this analysis?”

4. The actor confirms cancellation.

5. The system terminates the Snakemake workflow process.

6. The analysis is marked as “Cancelled” and moved to history.

17

Scenario 12: View Analysis History

Actor User

Entry Condition(s) The actor is logged in.

Exit Condition(s) The actor views the list of all past analyses.

Flow of Events 1. The actor navigates to the “Results” section via the sidebar.
2. The system retrieves and displays a table of completed, failed,
and cancelled analyses.

3. Each row shows: Analysis Name, Date, Sample Type, Status,
Pathogens Detected, and Action buttons.
4. The actor can search/filter analyses using the search input.

Scenario 13: View Detailed Analysis Results

Actor User

Entry Condition(s) The actor is logged in and an analysis has been completed
successfully.

Exit Condition(s) The actor views the detailed pathogen identification results.

Flow of Events

1. The actor clicks “View Report” on a completed analysis in the
history table.
2. The system retrieves the analysis results from the stored JSON
file.
3. The system displays the detailed result view including:

- Analysis summary (total reads, classified reads, classification
rate)

- Quality metrics (average quality, high-quality rate, mean
coverage)
- Pathogen cards showing detected pathogens with abundance,
confidence, and risk level

- Taxonomy breakdown (bacteria, viruses, etc.)
4. The actor can switch between tabs.

Scenario 14: Export Analysis Results

Actor User

Entry Condition(s) The actor is viewing detailed results of a completed analysis.
Exit Condition(s) The analysis results are exported in the selected format.

18

Flow of Events

1. The actor clicks the “Export” button on the results detail view.
2. The actor selects the export format (PDF, JSON, CSV).

3. The system generates the export file with all relevant data.
4. The system prompts the actor to select a save location.

9. The file is saved to the specified location.

Alternative Flow

View Detailed Analysis Results

Scenario 15: Check for Database Updates

Actor User

Entry Condition(s) The actor is logged in and the system has network connectivity.
Exit Condition(s) The system checks for and reports available database updates.

Flow of Events

1. The actor navigates to the “Database” section.

2. The actor clicks the “Check for Updates” button.

3. The system queries the update server for newer database
versions.

4. The system displays update availability status and version
information.

9. If updates are available, the actor can initiate the download.

Alternative Flow

1. The system cannot reach the update server.
2. The system displays: “Update check requires network
connection.”

Scenario 16: Add New Species to The Database

Actor User

Entry Condition(s) The actor is logged in and navigates to the Database section.

Exit Condition(s) A new species and its associated genomic data are successfully
integrated into the reference database.

Flow of Events 1. The actor navigates to the “Database” page from the sidebar.

2. The actor scrolls to the “Custom Species” section.

3. The actor clicks the “Add FASTA” button.

4. The system opens a file selection dialog.

5. The actor selects a FASTA file (.fasta or .fa) from their local
filesystem.

6. The system prompts the actor to enter species metadata (species
name, taxonomic ID, type).

7. The actor fills in the required metadata fields.

19

8. The system validates the FASTA file format and metadata.

9. The system indexes the sequences and adds the species to the
local database.

10. The system displays the new species in the “Custom Species”
list with its metadata.

Alternative Flow
(Invalid File Format)

1. The actor selects a file that is not a valid FASTA format.

2. The system displays an error message indicating the file format is
invalid.

3. The system prompts the actor to select a valid FASTA file.

Alternative Flow
(Duplicate Species)

1. The actor attempts to add a species that already exists in the
database.

2. The system warns the actor about the duplicate entry.

3. The actor can choose to update the existing entry or cancel the
operation.

Scenario 17: Remove Species From Database
Actor User
Entry Condition(s) The actor is logged in and navigates to the Database section.
At least one custom species entry exists in the database.
There is no ongoing analysis.
Exit Condition(s) The selected species entry is successfully removed from the local

reference database.

Flow of Events

1. The actor navigates to the “Database” page from the sidebar.

2. The actor scrolls to the “Custom Species” section.

3. The actor locates the species they want to remove from the list.
4. The actor clicks the “Remove” button next to the species entry.
5. The system displays a confirmation dialog asking if the actor
wants to remove the species.

6. The actor confirms the removal.

7. The system removes the species entry from the database index.
8. The system updates the species list to reflect the removal.

9. The system displays a success notification.

Alternative Flow

1. The actor clicks “Cancel” in the confirmation dialog.
2. The system closes the dialog and the species remains in the
database.

20

Scenario 18:

Edit Taxonomic Information

Actor User

Entry Condition(s) The actor is logged in and navigates to the Database section.
At least one custom species entry exists in the database.
There is no ongoing analysis.

Exit Condition(s) The taxonomic information for the selected species is successfully
updated.

Flow of Events 1. The actor navigates to the “Database” page from the sidebar.

2. The actor scrolls to the “Custom Species” section.

3. The actor locates the species they want to edit.

4. The actor clicks the “Edit” button next to the species entry.

3. The system displays an edit dialog with the current species
information.

6. The actor modifies the desired fields (species name, taxonomic
ID, or type).

7. The actor confirms the changes.

8. The system validates the updated information.

9. The system saves the updated metadata to the database.

10. The system displays the updated species information in the list.

11. The system shows a success notification.

Alternative Flow
(Invalid Taxonomic
ID)

1. The actor enters an invalid taxonomic ID format.
2. The system displays a validation error.
3. The actor corrects the taxonomic ID and resubmits.

Alternative Flow
(Cancel Edit)

1. The actor clicks “Cancel” or closes the edit dialog.
2. The system discards the changes and retains the original
information.

Scenario 19: View System Resources

Actor User

Entry Condition(s) The actor is logged in to the application.

Exit Condition(s) The actor views the current system resource usage including CPU,
RAM, GPU, and storage.

Flow of Events 1. The actor navigates to the “Dashboard” page from the sidebar.

2. The system automatically loads and displays current system
resource statistics.
3. The actor views the “System Resources” card.

Alternative Flow
(Resource Warning)

1. A system resource exceeds the warning threshold (e.g., storage
below 10%).

21

2. The system highlights the resource in red/warning color.
3. The system displays a warning notification to the actor.

Alternative Flow
(GPU Not Available)

1. The system detects that the GPU is not available.

2. The system displays “Not Available” in the GPU status.

3. The system notifies the actor that analyses may run slower
without GPU acceleration.

Scenario 20: Search and Filter Analyses

Actor User

Entry Condition(s) The actor is logged in and on the Results page with multiple
analyses in history.

Exit Condition(s) The actor successfully filters and finds specific analyses based on
search criteria.

Flow of Events 1. The actor navigates to the “Results” page from the sidebar.

2. The system displays the Analysis History table with all completed
analyses.

3. The actor locates the search box above the history table.

4. The actor types a search term (analysis name, sample type, or
date).

5. The system filters the table in real-time as the actor types.

6. The system displays only analyses matching the search criteria.
7. The actor can view the filtered results and select one to view
details.

Alternative Flow

1. The actor enters a search term that matches no analyses.

2. The system displays an empty table with a message “No analyses
found.”

3. The actor can clear the search to view all analyses again.

Scenario 21: Change User Password

Actor Registered User

Entry Condition(s) The actor has a registered username in the system
Exit Condition(s) The actor changes their password.

Flow of Events 1. The actor clicks on the change password button

2. The actor enters their old password, and enters their new
password twice

3. The system checks the validity of the credentials and checks that
the two passwords are the same.

22

4. The password is changed in the database.

Alternative Flow

1. The actor enters their old password incorrectly.
2. The system denies changing of the password.

Scenario 22: Admin Changes User’s Password

Actor Admin

Entry Condition(s) The actor is logged in with administrator privileges. The actor has
navigated to the User Management section and at least one
registered user exists in the system.

Exit Condition(s) The selected user's password is successfully changed by the
administrator.

Flow of Events 1. The actor accesses the “User Management” section.

2. The system displays a list of all registered users.

3. The actor locates the user whose password needs to be changed.

4. The actor clicks the “Reset Password” button next to the user
entry.

5. The actor enters a new temporary password for the user.

6. The actor confirms the new password by re-entering it.

7. The system validates the password meets security requirements.
8. The system updates the user's password in the database.

9. The system optionally sends a notification to the affected user.

Alternative Flow

1. The actor enters a password that does not meet security
requirements.

2. The system displays an error message indicating the password
requirements.

3. The actor enters a valid password that meets the requirements.

Scenario 23: Download Results from The Cloud
Actor Registered User
Entry Condition(s) The actor is logged in with a registered account.
The system has an active internet connection.
The actor has completed analyses stored on a remote server/cloud.
Exit Condition(s) The analysis results are successfully downloaded from the internet
to the local system.
Flow of Events 1. The actor navigates to the “Results” page from the sidebar.

2. The actor clicks on the “Cloud Results” tab.

23

3. The system connects to the remote server and retrieves the list of
available results.

4. The system displays a list of analysis results stored remotely.

5. The actor selects one or more results to download.

6. The actor clicks the “Download” button.

7. The system displays a download progress indicator.

8. The system downloads the selected results to the local storage.
10. The system adds the downloaded results to the local Results
history.

11. The system displays a success notification with the download
location.

Alternative Flow

1. The download process is interrupted due to network issues.
2. The system displays an error message with the failure reason.
3. The system offers the option to retry the download.

Scenario 24: Upload Result to The Cloud
Actor Registered User
Entry Condition(s) The actor is logged in with a registered account.
The system has an active internet connection.
The actor has completed analyses on the local machine.
Exit Condition(s) The encrypted analysis results are successfully uploaded to the

internet.

Flow of Events

1. The actor navigates to the “Results” page from the sidebar.
2. The actor clicks the “Upload to Cloud” button of a completed
analysis.

3. The system prompts for confirmation and displays data privacy
notice.

4. The actor confirms the upload.

9. The system displays an upload progress indicator.

6. The system encrypts the data before transmission.

7. The system uploads the results to the remote server.

8. The system verifies the upload was successful.

9. The system marks the result as “Synced” in the local history.
10. The system displays a success notification.

Alternative Flow

1. The upload process is interrupted due to network issues.

2. The system displays an error message with the failure reason.
3. The system offers the option to retry the upload.

4. The local copy of the results remains intact.

24

Scenario 25;

Forgot Password

Actor Registered User

Entry Condition(s) The actor is on the login page.
The actor has a registered account with a valid email address.

Exit Condition(s) The actor successfully resets their password and can log in with the
new credentials.

Flow of Events 1. The actor navigates to the login page.

2. The actor clicks the “Forgot Password?” link below the login form.
3. The system displays the password recovery form.

4. The actor enters their registered email address or username.

5. The actor clicks the “Send Recovery Link” button.

6. The system validates if the email/username exists in the
database.

7. The system generates a secure password reset token.

8. The system sends a password reset email to the registered email
address.

9. The system displays a confirmation message that the email has
been sent.

10. The actor opens the email and clicks the password reset link.
11. The system validates the reset token and displays the password
reset form.

12. The actor enters a new password.

13. The actor confirms the new password by re-entering it.

14. The system validates the new password meets security
requirements.

15. The system updates the password in the database.

16. The system displays a success message and redirects to the
login page.

17. The actor logs in with the new password.

Alternative Flow
(Email/lUsername
Not Found)

1. The actor enters an email or username that is not registered.

2. The system displays a generic message “If this account exists, a
recovery email has been sent.”

3. No email is sent, but no specific error is shown (security best
practice).

Alternative Flow
(Link Expired)

1. The actor clicks a password reset link that has expired (e.g., after
24 hours).

2. The system displays a message that the link has expired.

3. The system prompts the actor to request a new password reset
link.

25

3.5.2 Use Case Model

Analysis Management FAsfu\Xt:essing
| — View Detailed Results_) \Etancel Running Analys

or Running Analys|

_ cinclude> | _ —>(Select/Upload FASTQ

>_:’_Create New Analy: i

|~ _ sinclude»

./earcNFillsrAnalyss

Results (PDF/JSON/CSV))

xport

aelele Analy;

/N T ——
Registered Usel = .
(_Cloud Sync (Upload/Download))

View Analysis

Dataset Management

\'_Manual Database Curation

\\:,’ mport C

ustom Database)
158

User Management (Admin Only)

{\ﬁeset User Pa sswnrd;)

[[/

Figure 1. Use Case Model of Pathogenius.

3.5.3

Object and Class Model

<<enumerations>
FileType
RAW_FASTQ
eenumeron>> CLEANED_FASTQ
e —
InputFastQ RUNNING KRAKEN_OUTPUT
+astqlD: long COMPLETED KRAKEN_REPORT
AnalysisFile
+path: Siring FAILED ¥ QC_REPORT
Workspace +sizeBytes: long CANGELED +artiiactiD: long
+ype: FileTy [Crmmrr e
+workspacelD- long +isCompressed: boolean ype ype
+rootPath: String 1 +path: String Preprocess
7 o] o o
slores
owns input produces
1
U . WorkflowRun b IndexBuilder
ser -
““'L“m":;at‘ﬂ"‘” +uniD: long WorkflowStep
ser -
¥pe +userlD: long 1 creates 0.° Analysis executes | +steplD: long
GUEST . +engine: String 1 1
+displayName: String +analysisD: long steps “+name: String
AUTHENTICATED I 7 0 ; +workDir: String OutputPreprocessor
+type: Userlype - +state: RunStatus
+fesumeEnabled: boolean -
qoReports [uses generates
1 +status: RunStatus
GenomeEntry ReferenceDB Krakenindex ClassifierStep
dsind
+genomelD: long +dblD: long +indexID: lang 7 readsindex +classifier: Classifier
1
bstracts>
+axID: int 0." contains 1 +name: Striny +path: Strin <2 1
9 1 bdids 0. P 9 ClassificationResult Classifier
+speciesName: String +version: String +k:int +name: String uses
+resultiD: long
+astaPath: Siring +astUpdaled: date +minimizerLen: int +version: 8tring
+fotalReads: long
+source: String +sizeBytes: long +sizeBytes: long +mode: ClassifierMode
+classifiedReads: long
oiPath. St L o E Analyzer
+0 : String duces | " D
+unclassifiedReads: lon proguces
contains 9 +threshold: double
[
0.7 SpeciesFinding displays <<enumeration=>
QualityReport ClassifierMode
+indinglD: long CPU
+reportlD: long ~ Visualizer
+taxiD: long GPU
+summary- Strin +chartType: Strin
v S +sp Siring ype <

A

+readCount: long

+confidence: float

displays

Figure 2. Object & Class Model of Pathogenius.

27

3.5.4 Dynamic Models

3.5.41 Activity Diagrams
3.5.41.1 Authentication

Activity Diagram - Authentication

[User opens application)

Ves

¢ <, Existing user? fn

[Enter username and password)

Click "Login" '

5¢ credentials valid? 3

(Create user session) (Display error message)

[Redirect to dashboard) (Return to login page)

[+]

Want to sign up?

Enter username (Click "Continue as Guest")

[Create guest SESSiOﬂ)

(Redirect to dashboard)

®

] [+]

[Display error message)

(Redirect to login page) (Return to sign up page)

® ®

Figure 3. Activity Diagram of Authentication.

28

3.5.41.2 Analysis Activity Diagram

Activity Diagram - FASTQ Analysis Workflow

[User navigates to "New Analysis")

Select FASTQ files

no

¥

[Display error: "Please select files")

®

<_Files selected?

Enter analysis name

Select sample type

[Select reference database)

Y

[Adjust confidence threshold)

Analysis name provided?

[Display error: "Please enter analysis name")

®

Review configuration

Click "Start Analysis"

¥ ¥

[Create output directory) [Generate Snakemake config)

X X

v

[Initiate Snakemake workﬂow)

Analysis Pipeline})

[Preprocessing (Quality filtering))

Kraken2 classification

[Process classification results)

Generate reports

Analysis successful?

[Update status to "Completed") [Update status to "Failed")

Log error message

[Move to analysis history)

®

Store results

Display results to user

Figure 4. Activity Diagram of FASTQ Analysis Workflow.

29

3.5.41.3 Database Update Diagram

Activity Diagram - Database Management

(Us!r navigates to "Database" sactinn)

¥

Action type?

Click "add FASTA"

Walid FASTA format? &

‘Action ty“.,lcheck Updates

Fdt Species

Select species to edit

Action type?

e Species

Select species to remove

Click "Remaove”

Display confirmation dialog

(Remnve species from dalabase) (Can:el nperallnn)

Update database index
Display success netification

Network available?
es,

Modify species information
Walid taxonomic 107

(Save updated metadata) (nnsplayvahdanun errcr)

Update database é
Display success notification

Query update server

Display error: "Invalid file format®

Enter species metadata
Enter taxenomic D

Enter species type

(o sty i
Display duplicate warming Add species to database

Update existing? Index sequences

s

Download new database
Install database

es,

(Updare species erm'y) (cance\ nperallnn) l

Display success notification

Reindex database

Figure 5. Activity Diagram for Database Management.

30

3.5.4.2 State Diagrams
3.5.4.21 Analysis State Diagram

State Diagram - Analysis Object

Created

Start Analysis

Queued

Systerm Resources Available

Preprocessing
)

Quality Filtering Complete

Quality filtering =

of reads User Cancels

Classifying Kraken2 running IT

pathogen detection

Kraken2 Classification Complete User Cancels

Aggregating and - EEIEEEH

Error in Classification Results Processed

£ inp . GeneratingJSON
l,' rror in Processing - and CSV reports

Error in Finalization \Report Generation Complete

(Faie
___/ -

Error in Preprocessing

O

Figure 6. Analysis Object State Diagram.
31

Analysis Started

3.5.4.2.2 Database State Diagram

Analysis Completed

Cannot modify
during active
analysis

State Diagram - Database Object

./

Load Successful Import Database

Database indexed
and ready for

Add/Remove/Edit Species

Update Successful

—

classification

Update Failed \Check for Updates % No Updates System Shutdown

CheckingUpdates

Updates Found Download Failed

UpdateAvailable

User Initiates Download

Downloading

Download Complete

Installing

Figure 7. Database Object State Diagram.

32

Installation Complete Installation Failed

3.5.4.2.3 User Session State Diagram

Authenticated User verified
! Full permissions

Session Created

State Diagram - User Session

Active User interacting j

with system

User Action Mo Activity (5 min)

| User Logout

walid Credentials

Session Timeout (30 min) Guest Session Created

(N Dtﬁ.uthenticatedw

— \

Invalid Credentials

Continue as Guest ™ User Logout

Enter Credentials

GuestSession

e

Authenticating

Limited permissions
Read & analyze only

Figure 8. User Session State Diagram.

33

3.5.4.3 Sequence Diagrams

3.5.4.3.1

FastQ Analysis Sequence Diagram

Sequence Diagram - FASTQ Analysis

Frontend
(Electron)
User
1 1
| Select FASTQ files X

Us

i validate file selection

1

Backend
(Snakemake)

Kraken2
(Docker)

File
System

1 1]
1 Enter analysis name ! ! ! I
| and parameters - X X |
\ | validate configuration | \ X
| Click "start Analysis" ‘_: X X |
! | POST [apifanalysis/start X |
1 1 {files, config} 1 1 |
| | Create output directory: _:
i i Write Snakemake config N
| | Initialize workflow | |
! | Analysis ID & Status ! !
| ¢ Display "Analysis Started" | ! |
Read FASTQ files | N

Preprocessing |

(Quality filtering) !

Run classification \

(FASTQ data) !

Process results

Write JSON results

Classification results

(Aggregate statistics)

Y

Classify sequences

Write CSV report

Y

Y

Display notification X
 "Analysis Complete” !
i Click "iew Report" ‘__: |
X | GET Japifanalysis/{id} ‘:
X X | Read results
X | Analysis results X
\ I(.. |
1 Display detailed results i
er : '
Frontend Backend
(Electron) (Snakemake)

Kraken2
(Docker)

Figure 9. FASTQ Analysis Sequence Diagram.

Y

File
System

34

3.5.4.3.2 User Authentication Sequence Diagram

Sequence Diagram - User Authentication

Frontend Backend
(Electron) (API) User
User Database

Enter username
and password

Click "Login®
g >

validate input

{usernams, password}

Query user
by username

User record J
< 1

I

|

T

|

| POST [apifauth/login
I

i

! verify password hash
I

alt / [Credentials Valid]

Create session token

{token, userld, role}
Store session token

<

Redirect to Dashboard

finvalid Credentials]

401 Unauthorized
“Invalid credential

I

! o
‘q.D's" ayerrormessage
:(Remain on login page

| Enter username,
| password, confirm password

| Click "Sign Up”

i
| walidate passwords match

i <

! POST Japifauthfsignup

J {username, password}
i . LUsername, password; .,
I
1

Check username exists

alt / [Username Available]
Hash password
<
Insert new user

User created

201 Created

1 Display success message

Redirect to Login
<
[Username Taken]

409 Conflict
‘Username

Display error message

Femain on sign up page

'

Click "Continue as Guest"

Redirect to Dashboard

T
i
i
| Create guest session
i
' (Limited permi

L3

i
User

Frontend Backend _ser
Database

(Electron) (API)

Figure 10. User Authentication Sequence Diagram.

3.5.4.3.3 Database Update

Sequence Diagram - Database Update

Frontend Backend Update
(Electron) (API) Server Local
User Database
) T T T i
| | | | |
{ Check for Updates |
| |) | |
! Navigate to ! ! ! !
)			
"Database" section			
Click "check for Updates”			
i d			
)	GET Japi/database/check-updates_		
\ \ GET /latest-version A \			
alt [Network Available]			
	{version, size, url}		
	o		
	Get current version	i	
	le Current version i U		
i i i			
	Compare versions		
alt [Update Available] ' i i			
! ' {updateAvailable: true, ! !			
	! !		
< new\ersion, size}			
Display "Update available:			
:(Version X.X" ! ! ! !			
[No Update]		i i	
i	¢ fupdateAvaiable: false} i i		
! Display "Database ! ! !			
L isup to date" ' I I			
T T	\		
[Metwork Unavailable] [[!			
' ' Connection timeout ' '			
	g e		
	h		
! " Metworkerror ! !			
Display "Network			
:.(.C.“.'.“'.“?.C.t.'.“.”.I.EW‘fe.d.".... et			
. . :annlnad and Install Update :. . .			
]]]]			
! Click "Download Update" ! ! ! !			
! ' POST japi/database/download ! ! !			
' ' GET jdownload/{version} '			
loo, [Download chunks]	'		
	Database chunk		
e Progress update]			
\.Update progress bar			
i Download complete			
)) PRttt sl S)			
	Werify checksum		
i i i i			
alt [Checksum Validl] T T			
	Backup current database		
! ! Backup complete !			
	<		
! ! Install new database !			
! ! ke Installation complete !			
! ! Update version metadata ! !			
i i le Metadata updated i U			
	Installation successful		
Display "Database			
. Updated successfully		X X	
[Checksum invalid]			
	Delete corrupted file		
Display "Download failed,			
i " | | | |
e Pleaserety | | |
User Frontend Backend Update Dal;::gg‘se
(Electron) (API) Server

Figure 11. Database Update Sequence Diagram.

36

3.5.5 User Interface

.I\,.

Pathogenius

Portable, offline metagenomic pathogen
detection system for resource-limited
settings.

Welcome

Sign in to access the system

Username

rQ\ Enter your username

Password

& Enter your password

Forgot Password?

Emergency Access

(© Guest Mode (Offline Access)

Don't have an account? Create one

® System Status: Local/Offline

Figure 12. Login Page of Pathogenius.

Reset Password

Enter your email address or username and we'll send you a
link to reset your password.

Email or Username

[‘Em?!‘ your email or username J

Cancel Send Recovery Link

Figure 13. Reset Password Pop-up.

< Back to Login

Create Account

Register to start analyzing samples

Username

Choose a username

Email

Enter your email

N.

Display Name

Dr. Your Name

.
Pathogenius
Institution / Organization

Create your account to access the
. e.g., University Hospital
pathogen detection system.

Password

Min 12 characters

Confirm Password

Re-enter password

Alrasdu hava an arcaunt? Cian in

Figure 14. Sign Up Page.

Pathogenius

oz Welcome, Dr. Field Worker

Manage your metagenomic analyses and pathogen detection workflows

Dr. Field Worker
o]
doctor {é}

@ shboard

+ New Analysis

Start New Analysis . .
+ New Sequencing Analysis
Upload FASTQ files and detect pathogens in your sample

B Results System Resources

B Database CPU Usage 57%
RAM Usage 6.3 GB/7GB
GPU Usage 12%
—

System Status

Connection > Offline
Storage

GPU Available

Storage 42.3 GB Free Database Size 12.4 GB
Results Cache 3.8GB

[Logout

Frea Snare 473 GR

Figure 15. Dashboard of Pathogenius.

Analysis Summary

Pathogenius
v102
Total Analyses 127
o Dr. Field Worker) This Week 8
doctor
Pathogens Detected 23

@ Dashboard Success Rate 94.5%

+ New Analysis

B Results
Recent Analyses Q search analyses.

B Database

Analysis Name Date Input File Status Top Species Detected Actions

[Patient_001_Sample 2025-12-10 sample_001.fastq & Completed Escherichia coli View Report

D Water_Source_A 2025-12-09 water_afastq & Completed Pseudomonas aeruginosa View Report
System Status
Fchpecton N Clile O soil_sample_042 2025-12-08 soil_042.fastq ® Failed — View Report
GPU Available
Storage 42.3 GB Free [Blood_Culture_Test 2025-12-07 blood_culture fastq & Completed Staphylococcus aureus View Report

[Logout

Figure 16. Recent Analysis in Dashboard Page.

Pathogenius . .
. oz New Sequencing Analysis
Configure and launch a new metagenomic pathogen detection analysis

Dr. Field Worker 5
doctor

o
~

° Input Files 2 Configuration 3 Llaunch
(@ Dashboard

+ New Analysis

Upload FASTQ Files

B Results
B Database
J

Drag & Drop FASTQ Files

or click to browse your files
System Status Browse Files
Connection > Offline
GPU Available
Storage 423 GB Free

Configuration >
(> Logout

Figure 17. New Analysis Page.

"‘I’ Pathogenius

v1.0.2

Dr. Field Worker
= &

doctor

(@ Dashboard

+ New Analysis

@ Results

B Database

System Status

Connection X Offline
GPU Available

Storage 42.3 GB Free

[Logout

Pathogenius
v1.0.2

o Dr. Field Worker {6}

doctor

(@ Dashboard

+ New Analysis

@ Results

@ Database

System Status

Connection S Offline

GPU Available

Storage 423 GB Free
[Logout

New Sequencing Analysis

Configure and launch a new metagenomic pathogen detection analysis

o Input Files 2 Configuration 3 Launch

Upload FASTQ Files
1 file(s) selected Clear

[datamock fastq

Next: Configuration >

Figure 18. New Analysis Page After File Selection.

New Sequencing Analysis

Configure and launch a new metagenomic pathogen detection analysis

0 Input Files

° Configuration 3 Llaunch

Analysis Configuration

Analysis Name Sample Type Reference Database
[e.g., Patient_001_Sample J Clinical Sample v NCBI RefSeq 2025 (Default) 2
Confidence Threshold

70% (Balanced) v

< Back

Figure 19. New Analysis Page Second Step, Configuration.

A i New Sequencing Analysis

Configure and launch a new metagenomic pathogen detection analysis

o Dr. Field Worker
doctor &}

o Input Files

@ Dashboard

+ New Analysis

Review & Launch

B Results
Analysis Name
B Database
Input Files
Sample Type
System Status Reference Database
Connection X Offline
GPU Available Estimated Time
Storage 423 GB Free
(> Logout < Back

Figure 20. New Analysis Page Last Step, Launch.

Pathogenius .
o2 Analysis Results

View running analyses, history, and detailed reports

Dr. Field Worker
= &

doctor
% Local Results O Cloud Results

@ Dashboard

+ New Analysis @ Running Analyses

@ Results o Water_003_Sample

Preprocessing + Quality filtering reads..

@ Database

Analysis History

Analysis Name Date Sample Type
System Status & AL
Connection X Offline
GPU Available
Storage 42.3 GB Free
[Logout

Figure 21. Results Page with Running Analysis.

No analyses found. Start a new analysis to see results here.

Water_003_Sample
1 file(s) selected
Clinical Sample
NCBI RefSeq 2025

~15-30 minutes

D> start Analysis

‘ X Gancel ‘

Q search analyses.

Actions

41

o

@ D

+ N

Pathogenius
v1.0.2

Dr. Field Worker &
doctor

ashboard

ew Analysis

@ Results

@ Database

System

Status

Connection X Offline

GPU

Available

Storage 42.3 GB Free

o

[Logout

Pathogenius
v1.0.2

Dr. Field Worker &
doctor

(@ Dashboard

+ New Analysis

@ Results

B Database

System Status

Connection > Offline

GPU Available

Storage 42.3 GB Free
[Logout

Analysis Results

View running analyses, history, and detailed reports

S Local Results O Cloud Results

(@ Running Analyses m

No analyses currently running

Analysis History Q search analyses.
Analysis Name Date Sample Type Status Pathogens Found Report Actions
[Patient_001_Sample Dec 18, 2025 at 11:05 PM clinical & Completed — View Report @ 0
D Water_003_Sample Dec 18, 2025 at 11:04 PM clinical & Completed 4 detected View Report ® O

Figure 22. Results Page with Analysis History.

Analysis Results

View running analyses, history, and detailed reports

S Local Results O Cloud Results

¢ Backtotistoy Patient_001_Sample &, View Raw Data &, Export Report

Completed on Dec 18, 2025 at 11:05 PM

& DECISION SUPPORT ONLY - NOT FOR CLINICAL DIAGNOSIS: This analysis provides computational predictions only. All findings MUST be verified with
clinical laboratory tests.

Overview & Summary Taxonomic Analysis Quality Control Pathogen Details ‘Comparative Analysis

[T Al-Powered Clinical Summary

Metagenomic analysis of the blood sample reveals a polymicrobial infection dominated by Escherichia coli 0157:H7 (95% confidence, 45.2%

relative abundance, 3.42M reads). This highly pathogenic strain carries 12 virulence genes and 5 antimicrobial resistance genes.

Co-detection of Staphylococcus aureus MRSA USA300 (87% confidence, 18.6% abundance) with 7 AMR genes suggests methicillin-resistant co-
infection.

& CRITICAL ALERT: Multiple MDR (multidrug-resistant) pathogens detected. Immediate infectious disease consultation required.

Figure 23. Detailed Results Page, Al Summary.

42

Pathogenius
v1.0.2

o
~

(@ Dashboard

Dr. Field Worker
&

doctor

+ New Analysis

B Database

System Status

Connection > Offline

GPU Available

Storage 42.3 GB Free
[Logout

Pathogenius
v1.02

Dr. Field Worker
doctor @

o]
~

(@ Dashboard

+ New Analysis

B Database

System Status

Connection > Offline

GPU Available

Storage 42.3 GB Free
[Logout

LO-UELECUON OI DTaPNYIOCOCCUS Qureus IVIDA UDASUY (0/ 70 CONIITENCE, 10.070 @DUNAANCE) WItN / AIVIK ENES SUGJESLS MELNICIIN-TESISIant co-

infection.

/\ CRITICAL ALERT: Multiple MDR (multidrug-resistant) pathogens detected. Immediate infectious disease consultation required.

Clinical Initiate broad-spectrum IV antibiotics pending susceptibility testing. Consider vancomycin + meropenem combination
Recommendation: therapy.
Total Reads /\f Species Detected 2 Pathogens & AMR Genes ~M
11.89M 342 4 Critical 19 Total
194.2% high quality 63.6% classified High virulence Multi-drug resistant
Escherichia coli Staphylococcus aureus
95% i 87%
O157H7 CONFIDENCE MRSA USA300 CONFIDENCE
45.2% 3.42M 5 18.6% 1.41M 7
Abundance Reads AMR Genes Abundance Reads AMR Genes
Very High Confiden High Confiden

[e | TR .. - sviercegeres

Figure 24. Detailed Results Page.

Overview & Summary Taxonomic Analysi Quality Control Pathogen Details Comparative Analysis

Species Abundance Treemap

Proportional visualization of detected species - hover for details

Staphylococcus aureus
18.6%

conf.

Pseudomonas aeruginosa

Escherichia coli

Relative Abundance: 45.2%
Read Count: 342M
Confidence Score:

Risk Level:

Escherichia coli Klebsiella pneumoniae
5.1%

conf.

Hierarchical Taxonomy (Sunburst)

Multi-level taxonomic classification: Domain — Phylum — Species

Figure 25. Detailed Results Page, Species Abundance Treemap.

43

)V' Pathogenius

v1.0.2

o Dr Field Worker
doctor @

@ Dashboard

+ New Analysis

@ Results

@ Database

System Status

Connection X\ Offline

GPU Available

Storage 42.3 GB Free
(> Logout

}V Pathogenius

v1.02

Dr. Field Worker
2 &

doctor

@ Dashboard

+ New Analysis

B Database

System Status

Connection N Offline

GPU Available

Storage 42.3 GB Free
[» Logout

Hierarchical Taxonomy (Sunburst)

Multi-level taxonomic classification: Domain — Phylum — Species

Alphaproteobacteria
Abundance: 16.7%
Reads: 600000
Confidence: 88%

@ Bacteria (71%) @ Viruses (4.8%) @ Archaea (1.2%) @ Unclassified (23%)

Read Classification Flow (Sankey)

Figure 26. Detailed Results Page, Sunburst Chart of Taxonomy.

——

@ Bacteria (71%) @ Viruses (4.8%) @ Archaea (1.2%) @ Unclassified (23%)

Read Classification Flow (Sankey)

Visualization of how reads flow through the classification pipeline

Unclassified (3.64M)

Low Quality (690K}

Other Eukaryota (1.76M)

Value: 1.76M
Fungi, protozoa, host DNA

Figure 27. Detailed Results Page, Classification Sankey Plot.

44

Pathogenius
v1.0.2

o Dr. Field Worker

doctor

(@ Dashboard
+ New Analysis

B Results

System Status

Connection

GPU

&

X Offline

Available

Storage 423 GB Free

(= Logout

Pathogenius
v1.02

0 Dr. Field Worker
doctor

@ Dashboard
+ New Analysis

B Results

System Status

&

Connection > Offline

GPU Available

Storage 423 GB Free
[Logout

Database Management

Manage reference databases for pathogen detection and taxonomic classification

Current Reference Database
NCBI RefSeq 2025 - Bacterial and Viral Genomes

Version Index Size Total Genomes Last Updated
2025.01 124 GB 24,582 Dec 1, 2025
& Check for Updates &, Export Database

Import Custom Reference Database

Add custom FASTA files to extend the reference database with specific organisms or sequences for offline analysis
S
(]

Drop FASTA files here or click to browse

Browse Files

Figure 28. Database Management Page

Custom Species Q search species...
User-added species and custom reference sequences

Custom Pathogen A
bacteria - Tax ID: CUSTOMO01 - 15 sequences + Added Dec 10, 2025

Local Strain XYZ
bacteria « Tax ID: CUSTOMO02 - 8 sequences + Added Dec 8, 2025

Database Components

Bacterial Genomes
15,234 species + 8.2 GB

Viral Genomes
4,521 species « 2.1 GB

AMR Gene Database
2,847 genes » 1.8 GB

Taxonomy Index (Kraken2)

Figure 29. Database Management Page, Continued.

@ Active

+ Add FASTA

2 Edit

2 Edit

0 Remove

0 Remove

Indexed

Indexed

Indexed

Ready v

45

Pathogenius
v1.0.2

0 Dr. Field Worker

doctor &}
(@ Dashboard
+ New Analysis
@ Results
@ Database
System Status
Connection X Offline
GPU Available
Storage 423 GB Free
[Logout
Pathogenius
V102
o Dr. Field Worker
doctor {a‘}
(@ Dashboard
+ New Analysis
@ Results
@ Database
System Status
Connection > Offline
GPU Available
Storage 42.3 GB Free
(> Logout

Settings

Configure system preferences and analysis parameters

@© Al Analysis Settings

Enable Local Al Summary

Generate Al-powered clinical summaries for analysis results. Disable
to show raw results only.

Analysis Thresholds
Confidence Threshold

60% - Sensitive

Minimum confidence score to report a pathogen detection

Show Low Confidence Results

Include results below the confidence threshold in reports (marked as
low confidence)

Data Management

Minimum Read Count

100

Minimum reads required to report a species

Figure 30. Settings Page.

Data Management

Encrypt Local Data

Encrypt stored analysis results and sensitive data (requires password
on startup)

Notifications

Analysis Complete Notifications

Show system notifications when an analysis completes or fails

Settings Actions

& Export Settings & Import Settings ‘ [Reset to Defaults

System Information

App Version Database Version

v1.02 NCBI RefSeq 2025.01

Figure 31. Settings Page, Continued.

Platform

Win32

Node Version

v22.211

46

4 Other Analysis Elements

41 Consideration of Various Factors in Engineering Design

411 Constraints

Implementation Constraints:

e \lersion control and collaboration are managed through Git and GitHub.

e Bioinformatics pipeline implemented using Snakemake workflow management for modularity,
reproducibility, and fault tolerance.

e GUI developed with Electron.js for cross-platform compatibility and offline functionality.

e System employs phased development: initial CPU-based Kraken2 implementation with NVIDIA
CUDA-compatible hardware for future GPU acceleration.

e Al assistant functionality must use locally-operated Small Language Models (SLM) or quantized
LLMs for privacy and offline capability.

e Complete offline operation during the analysis phase with all dependencies, databases, and tools
bundled locally.

e Accepts raw sequencing data in standard FASTQ format; development uses simulated reads
from Icarus simulator.

Hardware and Software Specifications:

e Must operate on mid-range commercial laptops without requiring HPC clusters.
e Designed for low-power hardware to minimize energy consumption and maximize battery life in
off-grid scenarios.

Economic Constraints:

e Software must be completely free of charge.
e No recurring per-use costs to ensure accessibility in resource-limited settings.

Ethical Constraints:

Transient local processing of clinical samples containing human DNA.

No exposure of sensitive human genomic information.

Functions as a decision support system, not a diagnostic device.

Results presented as probabilistic evidence with appropriate uncertainty markers.

Environmental Constraints:

e Minimized environmental footprint through local analysis on low-power hardware.
e Performance-per-watt optimization for battery preservation.
e Avoids energy-intensive HPC clusters and continuous cloud connectivity.

Usability Constraints:

e Designed for field personnel without bioinformatics expertise.
e Command-line operations abstracted through GUI.
e No terminal or script interaction required.

47

Legal and Regulatory Considerations:

e Compliance with data privacy requirements for human genomic information.
e Operation within medical device regulations as decision support (not diagnostic) tool.

Maintainability and Extensibility:

e Modular architecture enabling future GPU acceleration migration.
e Workflow management supports reproducibility and fault tolerance.

Interoperability:

e Standard FASTQ format compatibility.
e Integration with Oxford Nanopore sequencing devices.

Global, Cultural, Social, Environmental, and Economic Factors:

The Pathogenius system addresses critical healthcare disparities in resource-limited global
settings where traditional laboratory infrastructure is unavailable. Culturally, the system respects data
sovereignty by maintaining complete offline operation, which is particularly important in regions with
concerns about external data control. Socially, it democratizes access to advanced pathogen detection by
removing cost barriers and simplifying technical complexity, enabling field personnel without specialized
training to perform sophisticated analyses. Environmentally, the platform's low-power operation and
elimination of cloud dependency significantly reduce carbon footprint compared to HPC-based
alternatives, making it sustainable for deployment in off-grid locations. Economically, the zero-cost model
and modest hardware requirements remove financial barriers that typically exclude resource-constrained
healthcare facilities from accessing cutting-edge diagnostic technology.

Table 1: Factors that can affect analysis and design.

Factor Effect Level Effect Description

Public Health High Enables rapid pathogen identification in outbreak
scenarios and resource-limited settings; improves
disease surveillance capabilities; reduces
time-to-diagnosis for infectious diseases.

Public Safety High Mitigates risks of disease spread through faster

pathogen detection; however, misinterpretation of
probabilistic results could lead to inappropriate treatment
if confidence indicators are ignored.

48

Public Welfare High Increases healthcare accessibility in remote areas;
removes cost barriers to advanced diagnostics;
empowers local healthcare workers with sophisticated
tools.

Global Factors High Addresses global health inequities via portable
diagnostics independent of central labs; supports
pandemic preparedness; enables data sovereignty
through offline operation.

Cultural Factors | Medium Respects data privacy concerns; offline operation
addresses trust issues regarding cloud storage; requires
consideration of local healthcare practices and
workflows.

Social Factors High Democratizes access to advanced molecular
diagnostics; reduces dependency on bioinformatics
expertise; empowers non-expert users through intuitive
interface design.

Environmental Medium-High Minimizes carbon footprint by eliminating cloud
Factors infrastructure; optimizes energy efficiency for
battery-powered/off-grid operation; reduces impact vs.
energy-intensive HPC alternatives.

4.1.2 Standarts

41.21 |IEEE 830
IEEE 830 provides the systematic framework for defining and documenting functional and

non-functional requirements. The standard ensures clarityy, completeness, and unambiguous
specification, preventing misinterpretation among team members and supporting accurate validation and
testing. This contributes to producing well-defined, traceable, and maintainable specifications for
Pathogenius.

49

41.2.2 ISO/IEC 25010
This standard provides a comprehensive quality model encompassing performance efficiency,

reliability, usability, security, maintainability, and compatibility. ISO/IEC 25010 [6] guides the assessment
of whether Pathogenius meets user expectations and operational requirements, particularly ensuring
reliable function in resource-constrained settings and producing trustworthy results. The project aligns

software quality goals with these internationally recognized guidelines.

41.2.3 UML 2.5.1 - Unified Modeling Language
UML 2.5.1 [7] is employed for describing system structure, behavior, and component interactions

through standardized graphical representations. Use-case diagrams illustrate user interactions, while
activity diagrams describe workflow execution through tools like Kraken2. Adherence to UML ensures
systematic documentation of architectural decisions that can be easily understood, reviewed, and

maintained, contributing to clearer design discussions and more accurate implementation.

41.24 1S09241-210
This standard emphasizes designing software by prioritizing user needs, capabilities, and

limitations, ensuring systems are usable and useful in real-world contexts. ISO 9241-210 [8] is particularly
relevant for Pathogenius as it targets users without bioinformatics expertise. The standard encourages
development of a clear, intuitive, error-reducing interface that supports correct interpretation of
species-level outputs without overwhelming users with technical complexity, incorporating iterative

evaluation and refinement.

4.2 Risks and Alternatives
4.21 Insufficient Classification Accuracy Due to Limited FASTQ Size

Description: The classification accuracy of the system may be reduced when the input FASTQ file
contains an insufficient number of reads or limited sequencing depth. In such cases, rare or
low-abundance pathogens may not be detected reliably, and accurate species-level identification may
require larger sequencing datasets, potentially exceeding 10 GB in size.

Contributing Factors:

e Low sequencing coverage or short sequencing runs, reducing the probability of sampling rare
organisms

e Presence of low-abundance pathogens within complex samples

e Hardware limitations restrict processing of very large FASTQ files in a single execution

50

Mitigation:

e |Integrate a FASTQ splitting utility such as SeqKit to divide large FASTQ files into smaller,
manageable chunks that can be processed sequentially or incrementally.

4.2.2 Limited Interpretive Quality of Local Language Model

Description: Pathogenius integrates a local language model to generate readable summaries and
explanations from structured analysis results. Due to hardware constraints and the requirement for local
execution, the selected model may be relatively low-parameter, potentially limiting the depth, nuance, or
contextual richness quality of generated answers.

Contributing Factors:

e Absence of large-scale pretrained models that typically require cloud-based inference
e Variability in analysis complexity that may exceed the expressive capacity of smaller models

Mitigations:

e Implement a deterministic, rule-based text generation layer that converts structured analysis
outputs into clear, generalized explanatory text.

e When internet connectivity is available, optionally allow the selection of higher-capacity language
models while keeping inference local.

4.2.3 GPU Memory Limitations

Description: When GPU acceleration is implemented, large FASTQ inputs may exceed available GPU
memory (VRAM), even if total file size does not exceed typical storage limits such as 10 GB. This may
cause runtime failures or require fallback to CPU execution, reducing expected performance gains.

Contributing Factors:

e Limited VRAM capacity on consumer-grade GPUs
e High read counts or long-read lengths increasing memory footprint during classification

Mitigations:

e [f supported, enable batching or chunked processing options provided by GPU-accelerated tools.
e Apply FASTQ splitting using utilities such as SeqKit to ensure per-batch memory usage remains
within VRAM limits.

4.2.4 Incomplete or Outdated Reference Databases

Description: Pathogen detection accuracy is dependent on the completeness and correctness of the
local reference database. Missing, outdated, or poorly annotated genomes may result in false negatives
or ambiguous classifications.

Contributing Factors:

e Limited availability of high-quality reference genomes for emerging or rare pathogens
e User-curated databases that unintentionally omit relevant taxa

51

Mitigations:

e Maintain versioned reference databases with clear provenance data.
e Clearly report database version and coverage information in analysis outputs.

4.2.5 False Positives Due to Shared k-mers and Taxonomic Ambiguity

Description: k-mer based classification methods such as Kraken2 may assign reads to incorrect or
overly specific taxa when closely related pathogens share a large proportion of genomic sequences. This
can lead to false positives or inflated confidence at the species level.

Contributing Factors:

e Closely related species with highly similar genomic content
e Short or noisy reads increasing classification ambiguity
e Overly permissive classification thresholds

Mitigations:

e Apply confidence thresholds and minimum read-count filters during the output post-processing.

e Clearly label low-confidence classifications in the interface and reports.

Table 2: Risks
Risk Likelihood Effect on the project B Plan Summary
Insufficient Low-abundance or rare
classification - pathogens may not be - - : -
accuracy due Medium detected reliably, reducing Split FASTQ files using SeqKit
to limited confidence in results
FASTQ size
Limited
|nte|rE[>ret|fv|e | High Generated explanations may | Rule-based text generation or
lqua Ity otloca be overly simplistic or lack enable optional
angulage contextual depth higher-capacity local models
mode when available
GPU memory
gmlltatlons High GPU acceleration may fail or | Enable GPU batching options
unnlg ted fall back to CPU, increasing or split FASTQ files using
accelerate analysis time SeqKit to fit VRAM constraints
processing
Incomplete or Relevant pathogens may not | Maintain versioned reference
outdated : be identified or may be databases with clear
Medium :
reference reported with reduced provenance
databases taxonomic resolution

52

False positives Incorrect or overly specific Apply confidence thresholds,
due to shared Medium species assignments may be [minimum read-count filters,
k-mers and reported, reducing the and taxonomic rank fallback
taxonomic reliability of classification strategies

ambiguity outputs

4.3 Project Plan

Pathogenius - Work Package Breakdown (T2504)

Sep 2025 Oct 2025 Nov 2025 Dec 2025 Jan 2026 Feb 2026 Mar 2026 Apr 2026 May
37 38 [39 |40 (41 [42 |43 (44 |45 46 (47 |48 (49 (50 [51 (52 [1 |2 (3 (4 |5 (6 |7 |8 (@ |10 (11 [12 [13 |14 [15 |16 |17 [18 [19 (20

— WP1: Requirements & Analysis { Naz)
WP1: Requirements & Analysis

— WP2: System Design & Architecture (Yigit)

WP2: System Design & Architecture

— WP3: Backend Development (Ege)

WP3: C5491 Backend (Demo)
WP3: C5492 Backend (Final)

— WP4: Frontend Development {Nazh)

WP4: C5491 Frontend (Demo)
WP4: C5492 Frontend (Final)

— WP5: Testing & Integration (Yunus)

WPS5: Testing & Integration

— WP&: C3491 Demo Preparation (Yunus)

WPG: C5491 Demo Preparation

= WPT7: Documentation & Deliverables (Ata)

WPT: Continuous Documentation
@ D1.1 Project Specification
$D7.4 Analysis & Requirements Report
#5491 Derno Presentation
#D7.5 Detailed Design Report
4 D7.6 Final Project Report
Sep 2025 Oct 2025 Nov 2025 Dec 2025 Jan 2026 Feb 2026 Mar 2026 Apr 2026 May
September 2025 - May 2026

Figure 32. Gantt Chart of the Work Packages.

Pathogenius employs a work package-based planning methodology spanning September 2025 through
May 2026, systematically breaking down the complex development effort into seven manageable,
interconnected packages. This structured approach enables clear assignment of responsibilities with
designated leaders for each package while ensuring all team members contribute across multiple areas,
fostering shared leadership and collaborative ownership. By organizing work packages with explicit
start/end dates, objectives, tasks, and deliverables, the team establishes transparent accountability and
progress tracking mechanisms. The parallel execution of development work packages (backend and
frontend) maximizes efficiency while dedicated packages for testing, demo preparation, and
documentation ensure quality and course compliance without disrupting core development. Each work
package is tracked as a set of GitHub Issues, providing real-time visibility into task status, blockers, and
individual contributions, while the accompanying Gantt chart visualizes dependencies, critical paths, and

53

timeline adherence. This planning methodology directly addresses the iterative nature of the project. The
CS491 demo milestone provides early validation and feedback, informing refinements in CS492, rather
than treating the project as a single linear effort. The work package structure also facilitates risk
management by identifying dependencies early and allowing the team to adjust resource allocation based
on progress and challenges encountered. Most importantly, this approach ensures continuous
documentation throughout development rather than retroactive report writing, as the Documentation
package runs parallel to all technical work, systematically capturing decisions, models, and results as
they occur. The result is a realistic, achievable plan that balances academic requirements with
engineering best practices while maintaining flexibility to adapt to challenges discovered during

implementation.
Table 3: List of work packages
WP# Work package title Leader Members involved

WP1 ReqUIrementS & AnalySIS Nazli Apaydln Ege Ate§, Ylglt Ali
Dogan, Yunus Glnay,
Ata Uzay Kuzey

WP2 System DeSign and Architecture Ylglt Al Dogan Nazli Apaydln, Ege
Ates, Yunus Giinay, Ata
Uzay Kuzey

WP3 Backend Development Ege Ate§ Ylglt Al Dogan

W4 Frontend Development Nazli Apaydin | Ata Uzay Kuzey, Yunus
Gunay

WP5 | Testing & Integration Yunus Giinay | Ege Ates, Yigit Ali
Dogan, Nazl Apaydin,
Ata Uzay Kuzey

WP6 | Demo Preparation Yunus Giinay | Ege Ates, Yidit Al
Dogan, Nazli Apaydin,
Ata Uzay Kuzey

WP7 Documentations & Deliverables Ata Uzay Nazli Apaydin, Ege

Kuzey Ates, Yigit Ali Dogan,

Yunus Giinay,

54

WP 1: Requirements & Analysis

Start date: 2 September 2025 End date: 15 October 2025

Leader: Nazli Apaydin Members involved: Ege Ates, Yigit Ali Dogan,
Yunus Giinay, Ata Uzay Kuzey

Objectives: Establish foundational project requirements through comprehensive analysis. Define functional
and non-functional requirements following IEEE 830 standards. Conduct feasibility studies across technical,
economic, and ethical dimensions. Address consideration of various engineering factors, identify constraints
and standards, document risks with alternatives, create detailed project plans, establish teamwork strategies,
and plan for new knowledge acquisition.

Tasks:

Task 1.1 Market and Competitive Analysis: Research existing pathogen detection solutions. Identify gaps
Pathogenius can address.

Task 1.2 Academic Literature Review: Review metagenomic sequencing literature. Validate Kraken2
technical approach.

Task 1.3 Functional Requirements Specification: Define detailed functional requirements for core features.
Ensure testability and alignment with goals.

Task 1.4 Non-Functional Requirements Definition: Establish usability, reliability, performance,
supportability, and scalability requirements following ISO/IEC 25010.

Task 1.5 Consideration of Various Factors: Analyze impact of public health, safety, welfare, global, cultural,
social, environmental, and economic factors. Rate each factor 0-10 and create a summary table.

Task 1.6 Constraints and Standards Documentation: Document all constraints and engineering standards
utilized (IEEE 830, ISO/IEC 25010, UML 2.5.1, ISO 9241-210).

Task 1.7 Risk Analysis and B Plan: Identify project risks and develop alternative plans. Create a risk
summary table.

Task 1.8 Project Planning: Define work packages with leaders, members, dates, milestones, and
deliverables. Create a Gantt chart.

Task 1.9 Teamwork Strategy: Document strategies for shared leadership, inclusive collaboration, and equal
contribution. Plan evidence collection.

Task 1.10 Ethics and Professional Responsibilities: Identify ethical responsibilities to be fulfilled
throughout the project.

Task 1.11 Learning Strategy Planning: Plan new knowledge acquisition and identify learning strategies.

Deliverables

D1.1: Project Specification Document

D1.2: Functional Requirements Specification
D1.3: Non-Functional Requirements Document
D1.4: Market Analysis Report

D1.5: Feasibility Study Report

D1.6: Constraints and Standards Compliance Document

55

WP 2: System Design and Architecture

Start date: October 1, 2025 End date: November 15 2025

Leader: Yigit Ali Dogan Members involved:
Nazli Apaydin, Ege Ates,
Yunus Glinay, Ata Uzay Kuzey

Objectives: Translate requirements into detailed system architecture with complete UML modeling. Design
four-layer architecture, decompose into subsystems, create all system models for Analysis Report. Develop
use cases, class, activity, sequence, and state diagrams. Design Ul wireframes and navigation. Define
interfaces and data management strategy.

Tasks:

Task 2.1 Design Goals Establishment: Define usability, performance, reliability, maintainability, scalability,
security goals. Prioritize based on requirements.

Task 2.2 High-Level Architecture Design: Create diagrams showing Sequencing Environment, Reference,
Workflow, and Frontend layers with interfaces.

Task 2.3 Subsystem Decomposition: Decompose into manageable subsystems. Define responsibilities and
dependencies.

Task 2.4 Use Case Model Development: Create use case diagrams with all actors and interactions.

Task 2.5 Object and Class Model Design: Develop class diagrams with entities, attributes, methods, and
relationships.

Task 2.6 Dynamic Models - Activity Diagrams: Create activity diagrams for authentication, analysis
workflow, and database update.

Task 2.7 Dynamic Models - Sequence Diagrams: Develop sequence diagrams for FASTQ analysis,
authentication, and database update.

Task 2.8 Dynamic Models - State Diagrams: Create state diagrams for Analysis, User Session, and
Database objects.

Task 2.9 User Interface Design: Design Ul navigation and create wireframes for all major screens with
navigational paths.

Task 2.10 Hardware/Software Mapping: Document deployment architecture and hardware requirements.

Task 2.11 Data Management Strategy: Design file-based storage for FASTA, indices, results, and
configuration.

Task 2.12 API and Interface Specification: Specify interfaces between components, data formats, and error
codes.

Deliverables

D2.1: Design Goals Document

D2.2: High-Level Architecture Diagram
D2.3: Subsystem Decomposition Diagram
D2.4: Use Case Diagrams

D2.5: Class Diagrams

56

D2.6: Activity Diagrams

D2.7: Sequence Diagrams

D2.8: State Diagrams

D2.9: Ul Wireframes and Navigation Structure
D2.10: Hardware/Software Mapping Documentation
D2.11: Data Management Specification

D2.12: APl and Interface Specifications

WP 3: Backend Development

Start date: October 14, 2025 End date: April 15 2025

Leader: Members involved:
Ege Ates Yigit Ali Dogan

Objectives: Implement core computational pipeline across both semesters. CS491: develop simplified
pipeline with pre-made FASTQ and dockerized Kraken2 for demo. CS492: add basecaller integration,
complete preprocessing, full database management, and optimizations. Develop Snakemake workflows,
integrate Kraken2, ensure robust error handling.

Tasks:
Task 3.1 Development Environment Setup: Configure Git, dependencies, Docker, and CI/CD pipeline.

Task 3.2 Snakemake Workflow Implementation: Implement modular rules for preprocessing, classification,
and output processing. CS491: simplified workflow. CS492: complete workflow with basecaller.

Task 3.3 Docker Configuration (CS491): Create container with Kraken2 and pre-built database subset.

Task 3.4 Preprocessing Module (CS492): Integrate quality control tools for long reads. Handle compressed
formats.

Task 3.5 Kraken2 Integration: Interface with dockerized (CS491) then local (CS492) Kraken2. Implement
confidence scoring.

Task 3.6 Basecaller Integration (CS492): Integrate Icarus simulator or actual device. Convert raw signals to
FASTQ.

Task 3.7 Reference Database Management: CS491: prepare pre-built subset. CS492: implement full
management with import and update tools.

Task 3.8 Output Processing Module: Aggregate results, compute statistics, calculate confidence, generate
JSON/CSV output.

Task 3.9 Result Storage System: Implement file-based storage for analysis history and results.
Task 3.10 Resource Management: Monitor CPU/memory, prevent overflow, support configurable limits.
Task 3.11 Error Handling and Logging: Implement comprehensive error handling and structured logging.

Task 3.12 Testing Data Preparation: CS491: curate pre-made FASTQ. CS492: configure simulator.

57

Deliverables

D3.1: Development environment with CI/CD
D3.2: Snakemake workflow (demo and final versions)
D3.3: Dockerized Kraken2 (CS491)

D3.4: Preprocessing module (CS492)

D3.5: Kraken2 integration

D3.6: Basecaller integration (CS492)

D3.7: Database management system (CS492)
D3.8: Output processing module

D3.9: Result storage system

D3.10: Resource management system

D3.11: Logging framework

D3.12: Test datasets (CS491) and simulator (CS492)

WP 4: Frontend Development

Start date: October 14 2025 End date: April 15 2025

Leader: Members involved:
Nazli Apaydin Ata Uzay Kuzey, Yunus Glinay

Objectives: Create intuitive Electron.js interface for non-expert users. CS491: develop basic interface
showing workflow and results. CS492: refine based on feedback, add features, improve error handling.
Communicate uncertainty appropriately. Follow 1ISO 9241-210 user-centered design principles.

Tasks:
Task 4.1 Electron.js Setup: Initialize project structure. Configure build for cross-platform deployment.

Task 4.2 Analysis Management Interface: Create file upload, analysis history list, and reopen/export
features.

Task 4.3 Workflow Execution Interface: Display processing status, stage indicators, and completion
notifications.

Task 4.4 Result Visualization: Create tables, charts showing species with confidence scores. Color-code
confidence levels.

Task 4.5 Dataset Management Interface: Display database information. CS492: add FASTA import and
rebuild features.

Task 4.6 Notification System: Implement completion, error, and status notifications.
Task 4.7 Settings Interface: Configure resources, adjust parameters, view system info.
Task 4.8 Help System: Create tooltips, contextual help, and troubleshooting guide.

Task 4.9 Error Handling (CS492): Enhance validation and user-friendly error messages.

58

Task 4.10 Ul Polish (CS492): Refine based on feedback. Improve visual design and accessibility.

Deliverables

D4.1: Electron.js application framework
D4.2: Analysis management interface
D4.3: Workflow execution interface
D4.4: Result visualization components
D4.5: Database management interface
D4.6: Notification system

D4.7: Settings panels

D4.8: Help system

D4.9: Enhanced error handling (CS492)

D4.10: Polished Ul (CS492)

WP §: Testing & Integration

Start date: December 1 2025 End date: May 15 2025

Leader: Members involved:
Yunus Glinay All team members

Objectives: Ensure continuous quality assurance for both demo and final versions. Conduct unit, integration,
system, and performance testing. Develop 50+ test cases for Detailed Design Report. Execute tests with
results for Final Report. Coordinate integration of separately developed components.

Tasks:
Task 5.1 Test Planning: Develop test plan for both CS491 and CS492 phases.
Task 5.2 Unit Testing: Create unit tests for backend modules. Achieve good coverage.

Task 5.3 Integration Testing - Demo (CS491): Test dockerized setup, pre-made file processing,
frontend-backend communication.

Task 5.4 Integration Testing - Final (CS492): Test basecaller integration, local Kraken2, database
operations.

Task 5.5 System Testing - Demo: End-to-end testing with curated datasets. Practice demo execution.

Task 5.6 System Testing - Final: Comprehensive testing with simulator/device. Test diverse scenarios and
file sizes.

Task 5.7 Test Case Specification (CS492): Develop test cases with ID, type, objective, procedure, expected
results, priority.

Task 5.8 Performance Testing: Measure processing times, memory usage, throughput. Compare demo vs
final performance.

Task 5.9 Accuracy Validation: Validate classification with known compositions. Document accuracy metrics.

59

Task 5.10 Non-Functional Testing: Test usability, reliability, offline operation, error handling, cross-platform.

Task 5.11 Test Execution and Documentation: Execute all cases. Document results with pass/fail status
and bug tracking.

Task 5.12 Demo Verification (CS491): Intensive testing of demo configuration for reliable presentation.

Task 5.13 Regression Testing (CS492): Ensure existing functionality remains working as the system
evolves.

Task 5.14 Integration Coordination: Coordinate merging of backend and frontend. Resolve interface issues.

Deliverables

D5.1: Test Plan

D5.2: Unit test suite

D5.3: Demo integration tests

D5.4: Final integration tests

D5.5: Demo system test results
D5.6: Final system test results

D5.7: Test Case Specifications (50+)
D5.8: Performance reports

D5.9: Accuracy validation report
D5.10: Non-functional test results
D5.11: Test execution log for Final Report
D5.12: Demo verification report
D5.13: Regression test results

D5.14: Integration coordination log

WP 6: Demo Preparation

Start date: November 28 2025 End date: December 22 2025

Leader: Members involved:
Yunus Glinay All team members

Objectives: Prepare polished CS491 demo presentation. Create dockerized setup with pre-made data.
Develop presentation materials and conduct rehearsals. This separate package exists because demo
implementation differs from the final system.

Tasks:

Task 6.1 Docker Configuration: Finalize container with Kraken2 and ~20-30 pathogen genomes. Test
reliability.

Task 6.2 Dataset Curation: Create pre-made FASTQ files representing realistic scenarios. Document
expected results.

60

Task 6.3 Demo Pipeline Integration: Integrate dockerized Kraken2 with simplified workflow. Optimize for
demo timing.

Task 6.4 Frontend Polish: Refine Ul for professional presentation.

Task 6.5 Presentation Slides: Create 2-4 slides with elevator pitch, status dashboard, architecture diagram,
and roadmap.

Task 6.6 Demo Script: Write detailed script with speaking roles for all members. Assign responsibilities.
Task 6.7 Backup Plans: Prepare video, screenshots, and explanations if live demo fails.
Task 6.8 Environment Setup: Prepare laptops with a configured system. Create a setup checklist.

Task 6.9 Limitations Documentation: Document what is simplified for demo vs final version.

Deliverables

D6.1: Dockerized Kraken2 with database

D6.2: Pre-made FASTQ files with documentation
D6.3: Demo-ready integrated system

D6.4: Polished demo Ul

D6.5: Presentation slides

D6.6: Demo script

D6.7: Backup materials

D6.8: Rehearsal recordings

D6.9: Setup checklist

D6.10: CS491 Demo Presentation

WP 7: Documentation & Course Deliverables

Start date: September 2 2025 End date: May 15 2025

Leader: Members involved:
Ata Uzay Kuzey All team members

Objectives: Produce all required CS491 and CS492 course deliverables. Maintain individual logbooks
throughout the project. Develop a comprehensive user manual. Create technical documentation. This final
package integrates all project work into formal reports.

Tasks:

Task 7.1 Individual Logbooks (Continuous): Each member maintains Google Docs logbook with timeline,
reflections, work samples, and progress. Update weekly.

Task 7.2 Project Information Form (September): Submit form with project name, description, supervisor,
and website.

Task 7.3 Project Specification Document (November): [COMPLETED '] Introduction, constraints,
standards, requirements, feasibility.

61

Task 7.4 Analysis and Requirements Report (December - CS491): Comprehensive report with current
system, proposed system, models (scenarios, use cases, class diagrams, activity/sequence/state diagrams,
Ul mockups), factors consideration, constraints, risks/B plan, project plan with Gantt chart, teamwork strategy,
ethics, learning plan.

Task 7.5 Detailed Design Report (March/April - CS492): Design goals, architecture analysis, subsystem
decomposition, 50+ test cases, factors consideration, teamwork details.

Task 7.6 Final Project Report (May - CS492): Requirements, architecture, implementation details, test
results, maintenance plan, factors/ethics/teamwork/meeting objectives, new knowledge acquired.

Task 7.7 User Manual: Installation instructions, getting started, workflow guide, result interpretation,
troubleshooting, FAQ, sample scenarios.

Task 7.8 Technical Documentation: Architecture docs, APl/interface docs, code comments, workflow
documentation.

Task 7.9 Project Website: Team info, project description, GitHub links, documentation downloads, demo
video, presentations.

Task 7.10 Presentation Materials: CS491 and CS492 slides with demo scripts.

Task 7.11 Standards Compliance: Document IEEE 830, ISO/IEC 25010, UML 2.5.1, ISO 9241-210
compliance.

Task 7.12 Final Package Assembly (May): Compile all reports, manual, code, installers, and documentation.

Deliverables

D7.1: Individual logbooks (continuous)

D7.2: Project Information Form

D7.3: Project Specification Document

D7.4: Analysis and Requirements Report (CS491)
D7.5: Detailed Design Report (CS492)

D7.6: Final Project Report (CS492)

D7.7: User Manual

D7.8: Technical Documentation

D7.9: Project Website

D7.10: Presentation Materials

D7.11: Standards Compliance Documentation

D7.12: Final Documentation Package

62

4.4 Ensuring Proper Teamwork

To handle the broad set of requirements for the project the team employs:

e Regular Meetings: Weekly meetings both face to face and online, code milestones to complete
before deadlines and frequent meetings with the advisor for feedback and addressing of
emergency issues with code.

e Clear Role Assignments: The role assignments are clear with clear mission boundaries between
the roles. Frontend engineers ensure the simplicity and usability of the application, backend
engineers create an efficient workflow for the integration and running of the project while the
hardware engineers will work on the GPU mapping of the classification algorithm.

e Collaboration and Deployment Tools: Github issues and issue boards for the milestones and
code completion, github for version control and code sharing alongside slack for team
coordination.

Task assignments of members:

o Ege Ates:
o Ege will focus on backend development, including the Snakemake workflow,
implementing services and integrating the databases.
o He will also work on the integration of signal simulators for reads and ensure the overall
scalability of the project.
e Nazli Apaydin:
o Nazl will focus on the frontend development, focusing on creating a user friendly design
for the application with clear instructions and flows.
o She will also work on creating the web depictions of the data obtained from the reads,
representing them in easy to understand graphs.
e Ata Uzay Kuzey:
o Ata will focus on the frontend development and the creation of web reports and graphs
from obtained reads.
o He will manage the robust integration of backend services and the local Al assistant to
provide human readable results for the end user.
o Additionally he leads the continuous documentation and course deliverables webpage.
e Yunus Glinay:
o Yunus will act as the lead for testing and integration, ensuring continuous quality
assurance through unit, system and performance testing.
o He is responsible for the demo preparations, creation of the dockerized setups and the
environments.
o As a cross functional member, he coordinates the merging of backend and frontend
components and resolves interface issues. He contributes to the frontend work as well.
e Yigit Ali Dogan:
o Yigit leads the system design and architecture, creating high level UML models and
subsystem decompositions.
o He will work on the backend services, creating the Snakemake workflow and integrating
services.
o Furthermore, he will specialize in the hardware/software mapping, specifically the
NVIDIA CUDA acceleration for the classification algorithm and increased performance.

63

4.5

Ethics and Professional Responsibilities

Pathogenius must uphold high ethical standards to ensure its reliability and performance in

critical clinical and field settings:

Privacy and Confidentiality: Since the clinical samples may contain human host DNA, the
system is constrained to process all data transiently on the local device in order to ensure that
the sensitive genomic information is not exposed or uploaded to external servers.

Decision Support vs Diagnosis: The system is strictly defined as a decision support tool rather
than a definitive and certain diagnostic device. The interface clearly presents results as
probabilistic evidence to prevent the over-interpretation by non expert users.

Transparency and Uncertainty: Species level results are communicated with appropriate
uncertainty markers and confidence scores. Low confidence scores findings are visually
distinguished to support medical decision making.

Equitable Access: To ensure accessibility in resource limited settings, the software is free of
charge and does not rely on recurring subscription costs when used in offline mode.
Professional Conduct: The development process adheres to recognized engineering standards
including but not limited to: IEEE 830 for requirement specification and ICO/IEC 25010 for
software quality models.

4.6 Planning for New Knowledge and Learning Strategies

Continuous learning is critical to navigate the evolving requirements of bioinformatics and
portable diagnostics hardware:

e Ongoing Research and Training: Members continuously study metagenomics
classification literature and validate Kraken2 or other classification algorithms’
performance on modest hardware.

e Knowledge Sharing: Team members utilize individual logbooks and weekly meetings to
share best practices in Snakemake workflow management and user centered design.

e Technical Mastery: Hardware specialists are acquiring NVIDIA CUDA skills to transition
from CPU based tasks to GPU accelerated processing.

e lterative Improvement: The phased development approach uses the CS491 milestones
and additional meetings with our advisor to gather performance feedback, which informs
technical refinements for the final implementation.

64

5

Glossary

1.

10.
1.
12.
13.
14,
15.

16.

17.
18.

19.
20.
21.
22,

FASTQ: A sequencing read file format that stores nucleotide sequences with per-base quality
scores.

FASTA: A sequence file format typically used for storing reference genome sequences.

Read: A single nucleotide sequence produced by a sequencing device and stored in a FASTQ
file.

Sequencing: The process of generating nucleotide read data from biological samples.
Long-Read Sequencing: Sequencing that produces long read fragments (used as the system’s
primary input style).

Kraken2: A k-mer based taxonomic classification tool used as the main classifier in the pipeline.
k-mer: A substring of length k extracted from reads/genomes, used for matching and
classification.

Index (k-mer index): A Kraken2-compatible database structure enabling fast k-mer lookups
during classification.

Snakemake: A workflow engine used to coordinate and execute the analysis pipeline
reproducibly.

Workflow: An ordered set of steps (rules) executed to process inputs into final outputs.

Pipeline: The end-to-end chain of preprocessing, classification, and post-processing stages.
Electron.js: The framework used to build the application interface.

Offline Execution: System operation without requiring internet connectivity during analysis.
Reference Database: Locally stored genomes used by Kraken2 to classify reads.

Metagenomic Analysis: Sequencing-based analysis of genetic material from mixed samples to
identify organisms.

Taxonomic Classification: Assigning reads to taxa such as species based on sequence
similarity evidence.

NVIDIA CUDA: The GPU computing platform referenced for future acceleration support.

NCBI (National Center for Biotechnology Information): A source of curated genomic
resources used for building local reference databases.

GPU: The graphics processor targeted for acceleration in later project stages.

CPU: The host processor used for analysis when GPU acceleration is unavailable or disabled.
VRAM: GPU memory that can limit accelerated processing for large workloads.

Sequencing Depth: The total number of reads representing a sample, influencing detection

sensitivity.

65

23.

24,

25.

26.

27.

28.

29.

30.

False Positive: An incorrect classification where a read is assigned to a taxon not actually
present in the sample.

Confidence Score: A numerical measure indicating the reliability of a taxonomic classification
result.

Low-Abundance Pathogen: An organism present at a small proportion within a sample, making
detection more difficult.

Preprocessing: Initial analysis steps applied to raw FASTQ data, such as quality filtering and
cleanup, before classification.

Post-Processing: Analysis steps applied after classification to aggregate results, compute
statistics, and generate reports.

Batch Processing: Executing analysis on subsets of reads sequentially to manage memory and
resource constraints.

Index Building: The process of converting reference genomes into a searchable k-mer index for
Kraken2.

Deterministic Execution: Pipeline behavior that produces identical outputs when given the

same inputs and reference data.

66

6 References

[11Y. L. Oon, Y. S. Oon, M. Ayaz, M. Deng, L. Li, and K. Song, “Waterborne pathogens detection
technologies: advances, challenges, and future perspectives,” Frontiers in Microbiology, vol. 14, Art. no.
1286923, Nov. 2023, doi: 10.3389/fmicb.2023.1286923.

[2] Bio-Rad Laboratories, “Pathogen detection,” Bio-Rad Laboratories, Online. Available:
https://www.bio-rad.com/en-tr/a/ls/pathogen-detection. Accessed: Dec. 18, 2025.

[3] Norgen Biotek Corp., “Waterborne pathogen detection,” Norgen Biotek, Online. Available:
https://norgenbiotek.com/category/waterborne-pathogen-detection. Accessed: Dec. 18, 2025.

[4] K. Sandas, J. Lewerentz, E. Karlsson, L. Karlsson, D. Sundell, K. Simonyté-Sjodin, and A. Sjodin,
“Nanometa Live: a user-friendly application for real-time metagenomic data analysis and pathogen
identification,” Bioinformatics, ~vol. 40, no. 3, Art. no. btae108, Mar. 2024, doi
10.1093/bioinformatics/btae108.

[5] L. E. Braley, J. B. Jewell, J. Figueroa, J. L. Humann, D. Main, G. A. Mora-Romero, N. Moroz, J. W.
Woodhall, R. A. White Ill, and K. Tanaka, “Nanopore sequencing with GraphMap for comprehensive
pathogen detection in potato field soil,” Plant Disease, vol. 107, no. 8, pp. 2288-2295, Aug. 2023.

[6] International Organization for Standardization, Systems and software engineering—Systems and
software Quality Requirements and Evaluation (SQuaRE)—System and software quality models, ISO/IEC
25010:2011, 2011.

[7] Object Management Group, Unified Modeling Language (UML) Specification, Version 2.5.1, Dec.
2017. [Online]. Available: https://www.omg.org/spec/UML/2.5.1

[8] International Organization for Standardization, Systems and soffware engineering—Life cycle
processes—Requirements engineering, ISO/IEC/IEEE 29148:2018, 2018.

67

	1​Introduction
	2​Current System
	3​Proposed System
	3.1​Overview
	3.2​Functional Requirements
	3.2.1 Main Requirements
	3.2.1.1 Analysis & Workflow Management
	3.2.1.2 FASTQ Processing & Classification
	3.2.1.3 Dataset Management
	3.2.1.4 Notifications
	3.2.1.5 User Registration and Authentication

	3.2.2 Secondary Features

	3.3​Non-Functional Requirements
	3.3.1 Usability
	3.3.2 Reliability
	3.3.3 Performance
	3.3.4 Supportability
	3.3.5 Scalability

	3.4​Pseudo Requirements
	3.5​System Models
	3.5.1​Scenarios
	3.5.2​Use Case Model
	3.5.3​Object and Class Model
	3.5.4​Dynamic Models
	3.5.4.1​Activity Diagrams
	3.5.4.2​State Diagrams
	
	3.5.4.3​Sequence Diagrams

	3.5.5​User Interface

	4​Other Analysis Elements
	4.1​Consideration of Various Factors in Engineering Design
	4.1.1​Constraints
	4.1.2​Standarts
	4.1.2.1​IEEE 830
	4.1.2.2​ISO/IEC 25010
	4.1.2.3​UML 2.5.1 - Unified Modeling Language
	4.1.2.4​ISO 9241-210

	4.2​Risks and Alternatives
	4.2.1​Insufficient Classification Accuracy Due to Limited FASTQ Size
	4.2.2​Limited Interpretive Quality of Local Language Model
	4.2.3​GPU Memory Limitations
	4.2.4​Incomplete or Outdated Reference Databases
	4.2.5​False Positives Due to Shared k-mers and Taxonomic Ambiguity

	4.3​Project Plan
	4.4​Ensuring Proper Teamwork
	4.5​Ethics and Professional Responsibilities
	4.6​Planning for New Knowledge and Learning Strategies

	5​Glossary
	6​References

